期刊文献+

Fredholm积分微分方程的Haar小波数值解(英文)

Numerical solution of Fredholm integral-differential equations by using Haar wavelet
下载PDF
导出
摘要 应用Haar小波求解Fredholm积分微分方程,引入了Haar小波、Haar小波积分算子矩阵,以此为基础建立了Fredholm积分微分方程的Haar小波数值方法.数值试验充分说明文中建议的方法的可行性、有效性和数值稳定性.这种方法的关键在于把原方程转化为代数方程,通过对代数方程求解,从而得到原方程的数值解,这样做的目的是为了降低求解问题的难度,使原来特别复杂和困难的问题转而容易解决. Haar wavelet was used to solve Fredholm integral-differential equation. An operational matrix of integration based on Haar wavelets was introduced, and aprocedure for applying this matrix to solve Fredholm integral-differential equations with boundary conditions was formulated. The efficiency of the proposed method is tested with the aid of examples.
作者 韩军利
出处 《纺织高校基础科学学报》 CAS 2009年第3期380-385,共6页 Basic Sciences Journal of Textile Universities
关键词 HAAR小波 Fredholm积分微分方程 积分算子矩阵 Haar wavelet Fredholm integral-differential equations operational matrix of integration
  • 相关文献

参考文献7

  • 1CHEN C F, HSIAO C H. Haar wavelet method for solving lumped and distributed-parameter systems [ J ]. IEE Proc Control Theory Appl, 1997,144: 87-94.
  • 2HSIAO C H. States analysis of linear time delayed systems via Haar wavelets[J]. Math Comput Simulat, 1997, 44: 457- 470.
  • 3UIO Lepik. Haar wavelet method for nonlinear integro-differential equations [ J ]. Appl Math Comput ,2006,176:324-333.
  • 4西德尼·伯罗斯C,拉米什A·皮那斯,郭海涛.小波与小波变换导论[M].英文版,北京:机械工业出版社,2005.
  • 5MALEKNEJAD K, LOTFI T, ROSTAMI Y. Numerical computational method in solving Frodholm integral equations of the second kind by using Coifman wavelet[ J]. Appl Math Comput,2007 ,186 :212-218.
  • 6RAZZAGHI M, ORDOKHANI Y. Solution of differential equations via rationalized Haar functions [ J ]. Math Comput Simulation,2001,56:235-246.
  • 7UIO Lepik. Application of the Haar wavelet transform to solving integral and differential equations [ J ]. Prec Estonian Acad Sci Phys Math, 2007,56 ( 1 ) :28-46.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部