期刊文献+

采用多尺度多级组合分类器快速定位乳腺X片中的感兴趣区域 被引量:3

Fast Locating Regions of Interest in Mammograms Using Multi-scale Cascade Assembled Classifier
下载PDF
导出
摘要 乳腺癌是妇女常见恶性肿瘤之一,早期诊断和治疗是降低乳腺癌患者死亡率的关键。微钙化是乳腺癌早期的一个重要标志,因此快速准确地找出乳腺X光片中含有微钙化簇的感兴趣区域(ROI)是成功诊断的第一步。乳腺X光片中含有大量无病变区域和少量微钙化区域,形成了一种典型的不对称分类问题。本研究结合大量无病变区域的信息训练多级组合分类器,并借助多尺度方法加快筛选速度,以定位ROI。在真实的数字化X线乳腺照片上的实验表明,该方法在无漏检的情况下,可以排除92.64%的正常区域,而且基于Matlab处理,对于每幅图片的平均处理时间仅为7 s。 Breast cancer is one of the common malignant tumors for women. The key to reducing the mortality caused by this disease lies in the early detection and treatment. Microcalcification is an important sign of the breast cancer in the early stage. Therefore the first step of successful diagnosis is to locate the region containing microcalcification cluster in the mammograms. It becomes a typical issue of asymmetry because the large portion of the mammograms is the normal region while only a small portion is the microcalcification region. A cascade assembled classifier was trained to locate the region of interest (ROI) with the abundant information from the normal region. By the muhi-scale processing method, the screening speed increased. The experimental results on the mammograms indicated that this method could exclude 92.64 % of normal area and the average time used for detecting each image is only 7 s based on Matlab.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2009年第5期674-679,685,共7页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(30700183)
关键词 乳腺X光片 微钙化簇 感兴趣区域(ROI) 多级组合分类器 mammograms microcalcification cluster region of interest cascade assembled classifier
  • 相关文献

参考文献13

  • 1American Cancer Society. Cancer facts and figures 2003 [ M ]. Atlanta: American Cancer Society, 2003.48 - 51.
  • 2张忠清,李广灿,叶召.乳腺癌当前流行趋势分析[J].中国肿瘤,2000,9(10):454-455. 被引量:111
  • 3Cheng Hengda, Cai Xiaopeng, Chen Xiaowei, et al. Computer- aided detection and classification of microcalcifications in mommograms : a survey [ J]. Pat tern Recognition, 2003, 36(12) : 2967 - 2991.
  • 4Bhangale T, Desaill B, Sharma U. An unsupervised scheme for detect ion of mierocaleifications on mammogram [ A ]. In: International Conference IEEE Image Processing [C ]. Vancouver : IEEE Computer Society, 2000. 184 - 187.
  • 5Cheng Hengda, Wang Jingl.i, Shi Xingjun. Microcalcification detection using fuzzy logic and scale space approaches [J]. Pat tern Recognition, 2004, 37(2): 363- 375.
  • 6Sohanian-Zadeh H, Rafiee-Rad F, Pourabdollah-Ne-jad S. Comparison of muhiwavelet, wavelet, haral-ick, and shape features for microcalcifcation classification in mammograms [ J ]. Pattern Recognition,2004, 37(10) : 1973 - 1986.
  • 7Papadopoulos A, Fotiadis DI, Likas A. An automatic microcalcification detection system based on hybrid neural network classifier [J]. Artificial Intelligence in Medicine, 2002, 25(2):149 - 167.
  • 8Papadopoulos A, Fotiadis DI, Likas A. Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines [J]. Artificial Intelligence in Medicine, 2005, 34(2) : 141 - 150.
  • 9Gurcan MN, Yardimci Y, Cetin AE, et al. Automated detection and enhancement of microcalcifications in mammograms using nonlinear subband decomposition [ J ]. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1997,4: 3069 - 3072.
  • 10贾新华,王哲,陈松灿.FAST SCREENING OUT TRUE NEGATIVE REGIONS FOR MICROCALCIFICATION DETECTION IN DIGITAL MAMMOGRAMS[J].Transactions of Nanjing University of Aeronautics and Astronautics,2006,23(1):52-58. 被引量:3

二级参考文献17

  • 1Mettlin C.Global breast cancer mortaliy statistics[].CA A Cancer Journal for Clinicians.1999
  • 2Pakin DM,Pisani P,Ferlay J.Estimates of the worldwide incidence of 25 major cancers in 1990[].International Journal of Cancer.1999
  • 3Tureo MRD.Breast cancer update[].CA A Cancer Journal for Clinicians.1999
  • 4Fremgen AM,Bland KI. McGinnis LS,et al.Clinical highlightsfrom the National Cancer Data Base[].CA A Cancer Journal for Clinicians.1999
  • 5Pakin DM,Laara E,Muir CS.Estimates of the worldwide fre-quaney of sixteen major cancers in 1980[].International Journal of Cancer.1988
  • 6Pakin DM,Rsani P,Ferlag J,et al.Estimates of the worldwideincidence of eighteen major cancer in 1995[].International Journal of Cancer.1993
  • 7Smart CR,Byrne C,Smith RA,et al.Twenty - year follow - upof the breast cancers diagnosed during the Breast Cancer De-tection Demonstration Project[].CA A Cancer Journal for Clinicians.1997
  • 8PapadopoulosA,FotiadisDI,LikasA.Characteri-zationofclusteredmicrocalcificationsindigitized mammogramsusingneuralnetworksandsupport vectormachines[].ArtificialIntelligencein Medicine.2005
  • 9ChengHD,CaiX,ChenX,etal.Computer-aided detectionandclassificationofmicrocalcificationsin mommograms:asurvey[].Pattern Recognition.2003
  • 10Soltanian-ZadehH,Rafiee-RadF,Pourabdollah-Ne-jadS.Comparisonofmultiwavelet,wavelet,haral-ick,andshapefeaturesformicrocalcifcationclassifi-cationinmammograms[].Pattern Recognition.2004

共引文献112

同被引文献31

  • 1林强,石江宏.超声心动图的一种动态信息——全方向M型心动图[J].仪器仪表学报,2005,26(4):437-440. 被引量:22
  • 2王瑞平,万柏坤,高上凯.独立分量分析在乳腺钼靶X片感兴趣区域提取中的应用[J].中国生物医学工程学报,2007,26(4):532-536. 被引量:6
  • 3Lin Qiang, Wu Wenji, Huang Liqin, et al. An omnidirectional M- mode echocardiography system and its clinical application [ J ]. Computerized Medical Imaging and Graphics. 2006,30:333 - 338.
  • 4Yitzhaky Y, Peli E. A method for objective edge detection evaluation and detector parameter selection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2003,25(8) :1027 - 1033.
  • 5Canny J. A computational approach to edge detection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986,8(6) :679 -698.
  • 6Konishi S, Yuile AL, Coughlan JM, et al. Statistical edge detection: Learning and evaluating edge cues[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 ( 1 ) :54 - 57.
  • 7Bao Paul, Zhang Lei. Noise reduction for magnetic resonance image via adaptive multiseale products thresholding[ J ]. IEEE Transactions on Medical Imaging,2003,22 (9) : 1089 - 1099.
  • 8Cbalana V, Linker DT, Haynor DR, et al. A multiple active contour model for cardiac boundary detection on echocardiographic sequences[ J]. IEEE Transactions on Medical Imaging, 1996,15 ( 3 ) :290 - 298.
  • 9DUIN R P W, TAX D M J. Experiments with classifier combining rules. In: Proceedings of the 1 st International Workshop on Multiple Classifier Systems (MCS2000), Cagliari, Italy,2000 : 16-29.
  • 10DRAMINSKI M, RADA-IGLESIAS A M, ENROTH S, et al. Monte Carlo feature selection for supervised classifica- tion[ J]. Bioinformatics, 2008,24( 1 ) :110-117.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部