期刊文献+

动态流量软测量中BP算法平坦区问题 被引量:3

Flat Area Problem of BP Algorithm on Soft Measurement System of Dynamic Flow
下载PDF
导出
摘要 传统的流量测量是采用物理流量计进行测量,物理流量计具有价格昂贵,不易维修的缺点。采用神经网络技术对流量进行动态测量不仅可以降低价格,更有易于维修的优点,在液压技术中有十分重要的意义。目前使用比较广泛的神经网络BP算法存在易陷入局部极小点、收敛速度慢的难题,而收敛速度慢有一部分原因是由于存在平坦区而产生的。针对BP算法收敛速度慢以及陷入平坦区难以逃离的难题,提出了附加奇数的动量BP算法。算法首先用公式求出权值修正的初始值,而后使用增加幂指数的梯度下降函数将权值修正函数值根据误差反馈值作动态改正,使之在遇到平坦区时增大梯度下降步伐,及时跳出平坦区。同时,通过降低计算量来提高计算速度、节省计算时间,加快收敛速度。通过理论证明了算法的正确性。试验结果表明,附加奇数的动量BP算法在保证网络较高的收敛率、达到训练精度的情况下,比传统的动量BP算法节省了9.65%的时间,训练步数也减少了31.13%,更加适合动态流量软测量中网络训练的实时性要求。 Traditionally, the physical flowmeter is used to measure the flow. However, the physical flowmeter is expensive and difficult to repair. Using neural network technology for dynamic flow measurement has the advantage of lower price and easy maintenance, which has important significance in hydraulic technology. The widely used BP algorithm has the problems of easy falling into local minimum point and low convergence speed. In view of the problems, an improved momentum back propagation (BP) algorithm with an odd parameter is proposed. First, a starting weight value is given. Then, the excitation function is improved to change the weight value in order to increase the convergence speed and gradient. At the same time, the number of useless test samples is decreased. The correctness of the proposed algorithm is proved by theory. The test result indicates that the new algorithm can save training time about 9.65% and the training step is also decreased about 31.13% than traditional BP algorithm while satisfying the requirement of convergence and training precision. The proposed algorithm is suitable, for real-time dynamic soft flow measurement.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2009年第9期89-92,共4页 Journal of Mechanical Engineering
基金 国家自然科学基金(50675189) 河北省自然科学基金(F2006000267)资助项目
关键词 流量测量 神经网络 动量BP算法 收敛 Flow measurement Neural network Momentum BP algorithm Convergence
  • 相关文献

参考文献6

  • 1唐勇,王益群,姜万录.一种用于动态流量软测量系统的神经网络训练方法[J].液压与气动,2004,28(10):28-30. 被引量:5
  • 2HUANG Guangbin,CHEN Lei,SIEW Chee-Kheong.Universal approximation using incremental constructive feedforward networks with random hidden nodes[J].IEEE Transactions on Neural Networks,2006,17(4):879-892.
  • 3ATIYA A F,PARLOS A G.New results on recurrent network training:Unifying the algorithms and accelerating convergence[J].IEEE Transactions on Neural Networks,2000,11(3):697-709.
  • 4王益群,唐勇,姜万录,王宏艳.神经网络软测量模型中全共轭梯度算法[J].机械工程学报,2005,41(6):97-101. 被引量:9
  • 5WANG Yiqun,TANG Yong,JIANG Wanlu,et al.Appraising and improving on the training algorithm of neural network in the soft measurement system of dynamic flow[C]//The Sixth International Conference on Fluid Power Transmission and Control,Hangzhou,China,2005:102-108.
  • 6NG Sin-Chun,CHEUNG Chi-Chung,LEUNG Shu-Hung.Magnified gradient function with deterministic weight modification in adaptive learning[J].IEEE Transactions on Neural Networks,2004,15(6):1 411-1 423.

二级参考文献11

  • 1[2]Melda ozdin (e)arpinliogˇlu,Mehmet Ya(e)ar Gündogˇdu.A Critical review on pulsatile pipe flow studies directing towards future research topics[J].Flow Measurement and Instrumentation,2001(12).
  • 2[3]R.S.Scalero , Nazif Tepedelenlioglu. A fast new algorithm for training feedforward neural networks[J]. IEEE Transactions on Signal Processing,1992,40(1).
  • 3[4]H.H.Chen,M.T.Manry and H.Chandrasekaran. A neural network training algorithm utilizing multiple sets of linear equations[J]. Neurocomputing ,1999,25(4).
  • 4[5]Funahashi M J.On the approximate realization of continuouse mapping[J].Neural Network,1989(2).
  • 5[6]ROTH M.Neural network technology for ATR[J].IEEE Trans.Neural Networks, 1990(1).
  • 6袁曾任.人工神经网络及其应用[M].北京:清华大学出版社,2002..
  • 7Bertsekas D P. Dynamic programming and optimal control,vol Ⅰ and Ⅱ, Belmont, MA: Athenas Scientific, 1995:12-75.
  • 8Fletcher R, C M Reeves. Function minimization by conjugate gradients.Computer, 1994(7): 149-154.
  • 9Deng C, Wu L B, Fan W C. Neural network approach for RHR calculation and prediction in fire science. In:Signal Processing, 1996, 3rd International Conference on, 1996,2:1484-1487.
  • 10Jacobs R A. Increased rates of convergence through learning rate adaptation Neural Networks, 1988, 1(4): 295-308.

共引文献9

同被引文献21

  • 1陶汪,李俐群,陈彦宾,吴林,杜春凯.基于人工神经网络的激光点焊焊点形态预测[J].机械工程学报,2009,45(11):300-305. 被引量:7
  • 2王益群,刘涛,姜万录,唐勇.软测量技术在动态流量测量中的应用[J].中国工程机械学报,2004,2(2):234-238. 被引量:3
  • 3Shao Hongmei,Zheng Gaofeng.Convergence analysis of a back-propagation algorithm with adaptive momentum[].Neurocomputing.2011
  • 4R.Teschl,W.L.Randeu,F.Teschl.Improving weather radarestimates of rainfall using feed-forward neural networks[].Neural Networks.2007
  • 5R.Irani,R.Nasimi.Application of artificial bee colony-basedneural network in bottom hole pressure prediction inunderbalanced drilling[].JPetroleum SciEngng.2011
  • 6M.Ueda.Improvement of signal-to-noise ratio by stochasticresonance in sigmoid function threshold systems,demonstratedusing a CMOS inverter[].Physica A Statistical Mechanics and its Applications.2010
  • 7Zhang Naimin.An online gradient method with momentum fortwo-layer feedforward neural networks[].Journal of Applied Mathematics.2009
  • 8Wu Wei,Wang Jian,Cheng Mingsong et al.Convergenceanalysis of online gradient method for BP neural networks[].Neural Networks.2011
  • 9W K Wong,C W M Yuen,D D Fan,et al.Stitching de-fect detection and classification using wavelet transformand BP eural network[].Expert Systems with Applica-tions:An International Journal.2009
  • 10黄劼,张海华.伺服阀频率特性试验用无载液压缸的研制[J].流体传动与控制,2009(6):26-27. 被引量:1

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部