期刊文献+

关联规则和事务集分组技术在图书馆个性化推荐系统中的应用研究 被引量:2

The Application Research of Association Rules and Affairs Grouping Technique in Library Individualized Recommendation System
下载PDF
导出
摘要 通过对经典Apriori算法挖掘过程的分析,提出了基于事务集分组技术的关联算法;该算法先按专业、年级和借阅数量等特性对读者聚类.然后分别对每个类进行关联分析,图书推荐质量较经典Apriori算法有所提高。 This paper puts forward the correlation algorithm which is based on affairs grouping technique by the analysis of classical Apriori algorithm's mining process .Readers are clustered by profession, grade, borrowing amount and other characteristics. Then, correlation analysis is made on each group. The book recommendation quality of this algorithm is better than the classical Apriori algorithm.
作者 章婷 姚万辉 ZHANG Ting, YAO Wan-hui (1.International Business School, Anhui University, Hefei 230011, China; 2.Education D'epartment, Hefei University, Hefei 230601, China)
出处 《电脑知识与技术》 2009年第11期8773-8775,共3页 Computer Knowledge and Technology
关键词 数据挖掘 关联规则 聚类 个性化推荐 图书馆 data mining, Association rules, Clustering, individualized recommendation, Library
  • 相关文献

参考文献1

二级参考文献96

  • 1Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 2Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 3梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 4Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 5Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 6Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 7Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 8Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87
  • 9Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217
  • 10Linden G, Smith B, York J. Amazon. corn recommendations: hem-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76-80

共引文献434

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部