期刊文献+

离子注入技术现状与发展趋势 被引量:2

The Technology Status and Development Trend of Ion Implantation
下载PDF
导出
摘要 离子注入制程已成为器件设计的最前端工作,现在更被视为实现32nm和22nm晶体管制程的推动要素。器件漏电流、浅结面制作,器件尺寸缩小,以及急速增加成本的挑战,正在限制摩尔定律的延伸。针对32nm节点离子注入制程器件的工艺要求,介绍了离子注入设备的发展方向。 The ion implantation process has become a front-end work of device design, and now even been viewed as the realization of 32 - 22 nanometer transistor process driven element. The device drain current, shallow junction implantation, the device dimensions shrink, as well as the challenges of rapid increase in costs, are limiting the extension of Moore's Law. This paper describes the direction of development of ion implantation equipment in connection with the 32 nm node device ion implantation process technological requirements.
出处 《电子工业专用设备》 2009年第10期1-8,共8页 Equipment for Electronic Products Manufacturing
关键词 32 nm节点器件 漏电流控制 超浅结注入 大束流低能注入 单晶片注入 机械扫描 32 nm Node Devices Drain Current Control Ultra-Shallow Junction Implantation Large beam low-energy Implantation Single-Chip Implantation Mechanical Scanning
  • 相关文献

参考文献5

二级参考文献26

  • 1The International Technology RoThe International Technology Roadmap for Semiconductors (ITRS) Roadmap. ITRS roadmap, 2006. http://public.itrs.net/.
  • 2Wakabayashi H, Yamagami S, Ikezawa N, et al. Sub-10-nm planar-bulk-CMOS devices using lateral junction control. In: International Electron Devices Meeting (IEDM) Tech Dig. New York: IEEE, 2003. 989-991.
  • 3KangJ F, Yu H Y, Ren C, et al. Improved electrical and reliability characteristics of HfN/HfO2 gated nMOSFET with 0.95 nm EOT fabricated using a gate-first process. IEEE Electron Devi Lett, 2005, 4(26): 237-239.
  • 4KangJ F, Ren C, Yu H Y, et al. A novel dual-metal gate integration process for sub-1nm EOT HfO2 CMOS devices. In: 2004 International Conference on Solid State Devices and Materials (SSDM 2004). Tokyo, 2004, 15-17.
  • 5Tian Y, Xiao H, Huang R, et al. Quasi-SOI MOSFET-a promising bulk device candidate for extremely scaled era. IEEE Trans Electron Dev, 2007, 53(7): 1784-1788.
  • 6Timp G, Bude J, Bourdelle K K, et al. The ballistic nano-transistor. IEDM Tech Dig, 1999:55-58.
  • 7KangJ F, Yu H Y, Ren C, et al. Scalability and reliability characteristics of CVD HfO2 gate dielectrics with HfN electrodes for advanced CMOS applications. J Electrochemical Soc, 2007, 154:H927-H932.
  • 8Sa N, KangJ F, Yang H, et al. Mechanism of positive-bias temperature instability in sub-1 nm TaN/HfN/HfO2 gate stack with low preexisting traps. IEEE Electron Dev Lett, 2005, 26(9): 610-612.
  • 9Choi Y K, Ha D, King T J, et al. Nanoscale ultrathin body PMOSFETs with raised selective germanium source/drain. IEEE Electron Dev Lett, 2001, 22(9): 447-448.
  • 10Uchida K, Koga J, Takagi S I. Experimental study on carrier transport mechanisms in double- and single-gate iltrathin-body MOSFETs-coulomb scattering, volume inversion, and 6TSOI-induced scattering. In: IEDM. New York: IEEE, 2003. 33.5.1-33.5.4.

共引文献13

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部