期刊文献+

基于SVM的逆模型控制在挠性卫星姿态控制中的应用

Attitude Control of Flexible Satellite Based on Support Vector Machines
下载PDF
导出
摘要 针对带有挠性太阳帆板卫星的姿态控制问题,设计了基于支持向量机的逆模型控制律,采用模态分析方法对姿态模型进行简化处理;首先设计了基于支持向量机的恒衰减因子逆模型控制律,分别在无干扰、阶跃干扰和周期性干扰三种情况下进行仿真;考虑执行机构的力矩输出有限,在对恒衰减因子取不同值下的仿真结果进行分析的基础上,又分别设计了衰减因子取分段函数形式及输入限幅的控制律;仿真结果显示,设计的控制律能够使系统具有好的稳定效果和动态品质,有效地减小了挠性模态振动对姿态控制的影响,并对扰动具有一定的抑制能力。 An inverse model control law based on SVM is designed for the attitude control of satellite with solar arrays. The satellite model is simplified by using modal analysis. An inverse model controller with constant attenuation factor is proposed, the simulation results with different disturbance is presented. Because the torque is limited, the controller is implemented with piecewise control function and limited amplitude control law in view of simulation results with various attenuation factors. Simulation shows that the affection of flexural mode on the attitude of satellite can be reduced greatly and the disturbance can also be restrained.
出处 《计算机测量与控制》 CSCD 北大核心 2009年第10期1942-1945,共4页 Computer Measurement &Control
基金 国家自然科学基金项目(60804002)
关键词 支持向量机 姿态控制 逆模型 挠性卫星 SVM attitude control inverse model flexible satellite
  • 相关文献

参考文献5

  • 1程磊,王天舒,李俊峰.挠性多体卫星姿态动力学与控制[J].清华大学学报(自然科学版),2005,45(11):1506-1509. 被引量:6
  • 2Gennaro S D. Output attitude tracking for flexible spacecraft [J]. Automatica, 2002, 38: 1719-1726.
  • 3Ashok I, Sahjendra N S. Sliding mode control of flexible spacecraft under disturbance torque[A]. 1988., Proceedings of the 27th IEEE Conference on Decision and Control [C].1988:718 - 723.
  • 4李建民,张钹,林福宗.支持向量机的训练算法[J].清华大学学报(自然科学版),2003,43(1):120-124. 被引量:46
  • 5刘谬.带挠性太阳帆板的三轴稳定卫星姿态控制系统分析与设计研究[D].合肥:国防科学技术大学,2001.

二级参考文献31

  • 1林来兴 蒋维禧.零动量-偏置动量三轴姿态控制系统[J].宇航学报,1986,.
  • 2VapnikV.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 3吴麒 慕春棣 杜继宏.自动控制原理 [M].北京:清华大学出版社,1992..
  • 4Osuna E,Freund R,Girosi F. Support Vector Machines: Training and Application [R]. CBCL Paper #144 / AI Memo #1602,Cambridge,MA: Massachusetts Institute of Technology,AI Lab,1997.
  • 5Osuna E,Freund R,Girosi F. An improved training algorithm for support vector machines [A]. Principe J,Gile L,Morgan N,et al. Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing [C]. IEEE,1997. 276-285.
  • 6Joachims T. Making large-scale support vector machine learning practical [A]. Scholkopf B,Burges C,Smola A. Advances in Kernel Methods - Support Vector Learning [C]. Cambridge,MA: MIT Press,1999. 169-184.
  • 7LIN Chihjen. On the convergence of the decomposition method for support vector machines [J]. IEEE Transactions on Neural Networks,2001,12(6): 1288-1298.
  • 8Laskov P. An improved decomposition algorithm for regression support vector machines [A]. Solla S,Leen T,Muller K-R. Advances in Neural Information Processing Systems 12 [C]. Cambridge,MA: MIT Press,2000. 484-490.
  • 9Laskov P. Feasible direction decomposition algorithms for training support vector machines [J]. Machine Learning,2002,46(1/3): 315-349.
  • 10Pérez-Cruz F,Alarcón-Diana P,Navia-Vázquez A,et al. Fast training of support vector classifiers [A]. Leen T,Dietterich T,Tresp V. Advances in Neural Information Processing Systems 13 [C]. Cambridge,MA: MIT Press,2001. 734-740.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部