摘要
研究M是连通拟阵与G(D#)是连通图的关系。证明了M中有一个基B,使得C1,C2,…,Cn-r是M中全体对应于基B的基本极小圈,等价于对任意j∈1,2,…,n-r,Cj∪i≠jCi。由此证明了(Cunningham 1973,Krogdahl 1977)M是连通拟阵等价于B∪e∈E(M)-BCM(e,B),并且对任意X∩Y=φ,X∪Y=E(M)-B都有∪e∈XCMe,B∩∪e∈YCM(e,B)≠φ。得到结果为M是连通拟阵等价于G(D#)是连通图。
The relationship of connected matroid M and connected graph G(D#) is studied. First the propositio is n is proved that there is a base B in M, making C1, C2,..., Cn-r the fundamental circuit of M with respect to B, equivalent to the proposition that for any j∈{1,2,…,n-r},Cj¢∪i≠jCi. And then that (Cunningham 1973, Krogdahl 1977) M is a connected matroid is equivalent to Be∈E∪(M)-BCm(e,B), and for any X∩Y=φ,X∪Y=E(M)-B,(e∈X∪Cm(e,B))∩(e∈Y∪Cm(e,B))≠φ . The main results of the paper is the equivalence of connected matroid M and connected graph G(D#).
出处
《科学技术与工程》
2009年第21期6289-6291,6295,共4页
Science Technology and Engineering