期刊文献+

关于反关联奇序列的各位数字之和的性质 被引量:3

In the Concerning the Property of the Sum of Every Digit of the Back Concatenated Odd Sequences
下载PDF
导出
摘要 研究了Smarandache问题中反关联奇序列的各位数字之和的性质,采用了初等方法,得到了反关联奇序列中单奇位数不超过r的所有单奇的位数之和,反关联奇序列中某些特殊项的各位数字之和,以及前50项中任意项的各位数字之和的通项的精确表达式。以上结论对Smarandache的数列有推动作用。 The property of the sum of every digit of the back concatenated odd sequences was studied. By adopting the elementary methods, the sum of figures is got of alI the single odd whose figure is not more than ‘r' and the sum of every digit of some special terms of the sequences is got, and the precise expression of the sum of evey digit of the Back Concatenated Odd Sequences's front fifty terms is got. Above conclusion will have a center impetus function to the Smarandache problem.
作者 杨倩丽 崔鹏
出处 《科学技术与工程》 2009年第21期6486-6488,共3页 Science Technology and Engineering
基金 陕西省自然科学基金项目(SJ08A22)资助
关键词 反关联奇序列 各位数字之和 位数之和 the back concatenated odd sequences the sum of every digit the sum of figures
  • 相关文献

参考文献5

  • 1Smarandache F. Only problems,not solutions. Chicago: Xiquan Publishing House, 1993 ;22-26.
  • 2Mihaly B, Luciana T. (Eds). Notionsand guestions in numberatheory, vol2. httq ://www. gallup, unto. edu/SNAQONT 2. TXT,2006.2.
  • 3易媛.Smarandadce反关联奇序列.《Smarandache问题研究》.High American Press,2006.64-70.
  • 4Liu Junzhuang, Wang Nianliang. On the Smarandache back concatenated odd sequences . Research High American press ,2005 ; 112-115.
  • 5杨倩丽,李赟.关于Smarandache问题中逆序排列的偶数数列的性质[J].纯粹数学与应用数学,2006,22(3):325-329. 被引量:2

二级参考文献2

  • 1Smarandache F.Only Problems,not Solutions[M].Chicago:Xiquan Pub 1.House,1993.
  • 2Liu Junzhuang,Wang Nianliang.On the Smarandache Back Concatenated Odd Sequences[J].Research on Smarandache problems in number theory,2005(2):63-70.

共引文献1

同被引文献18

  • 1Wengpeng Zhang.Some identities involving the Fibonacci numbers[M].The Fibonacci Quarterly,1997,35:225-229.
  • 2Smanmdache F.Only Problem s,Not Solutions[M].Chicago:Xiquan Publishing House,1993.
  • 3易媛,亢小玉.Smarandache问题研究[M].High American press,American,2006.
  • 4COQUET J. Power sums of digital sums [J]. J Number Theory, 1986, 22(2) : 161-176.
  • 5DUMONT J M, THOMAS A. Digital sum problems and substitutions on a finite alphabet [J]. J Number Theo- ry, 1991, 39(3): 351-366.
  • 6OKADA T, SEKIGUCHI T, SHIOTA Y. Applications of binomial measures to power sums of digital sums [J]. J Number Theory, 1995, 52(2): 256-266.
  • 7DARTYGE C, LUCA F, STANICA P. On digit sums of multiples of an integer [J]. J Number Theory, 2009, 129(11) : 2820-2830.
  • 8SMARANDACHE F. Only problems, not solutions [M]. Chicago: Xiquan Publishing House, 1993: 12.
  • 9易媛,亢小玉.Smarandache问题研究[M].Rehoboth:HighAmericanPress,2006:93-94.
  • 10APSTOL T M. Introduction to analytic number theory [M]. New York.. Springer-Verlag, 1976: 77-78.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部