期刊文献+

高效的抗阻断攻击的非认证组密钥协商方案 被引量:1

Efficiently non-authenticated group key management protocol withstand interruption attack
下载PDF
导出
摘要 针对BD_3协议存在密钥阻断攻击的缺点,采用双线性映射技术给出了解决方案,并且该方案在被动攻击下的安全性证明具有最"紧"的归约。通过分析和仿真对比已有的同类解决方案可以看出:改进方案具有更优的效率,特别是其消息传输量可以仅约为已有方案的0.14倍。另外,在仿真过程中,简要地说明了实用中双线性映射的实现方法,特别是参数的选取及其安全性意义。 To overcome the fault that the interruption attack from internal participation of BD_3 protocol, a new scheme was constructed by applying the bilinear map and had the provable security with tight reduction. By analyzing and simulating, compared with another scheme, it was obvious that the new scheme was more efficiently than that one. Especially in the quantity of message for communication, it could be approximately 0.14 multiple of that one. On the other hand, the process of simulation simply explaines the method how to carry out the bilinear map, especially how to choose the parameters of it and its signification in the security.
出处 《通信学报》 EI CSCD 北大核心 2009年第10期75-80,共6页 Journal on Communications
基金 国家自然科学基金资助项目(60703048) 湖北省自然科学基金项目(2007ABA313)~~
关键词 数据安全与计算机安全 BD_3协议 密钥阻断攻击 双线性映射 date and computer security BD3 protocol interruption attack bilinear map
  • 相关文献

参考文献11

  • 1SANDRO R, DAVID H. A survey of key management for secure group communication[J]. CAM Computing Surveys, 2003, 35(3): 309-329.
  • 2CHALLAL Y, SEBA H. Group key management protocols: a novel taxonomy[J]. International Journal of Information Technology, 2005,2(2): 105-118.
  • 3BURMESTER M, DESMEDT Y. A secure and efficient conference key distribution system[A]. Euocrypt'94, Italy, LNCS 950[C]. Springer-Verlag, Berlin, 1994. 275-286.
  • 4崔国华,郑明辉,粟栗.一种抗阻断攻击的认证组密钥协商协议[J].计算机科学,2008,35(1):77-79. 被引量:1
  • 5BONEH D, FRANKLIN M. Identity-based encryption from the weil pairing[A]. Advances in Cryptology-Crypto 2001[LNCS 2139][C]. Springer-Verlag, 2001.231-229.
  • 6BURMESTER M, DESMEDT Y. A secure and scalable group key exchange system[J]. Information Processing Letters, 2005, 94(3): 137-143.
  • 7MENEZES A J, OKAMOTO T, VANSTONE S A. Reducing Elliptic Curve Logarithms to Logarithms in a Finite Field[J]. IEEE Transactions on Information Theory, 1993, 39(5): 1639-1646.
  • 8MAURER U, WOLF S. The Diffie-Hellman protocol[J]. Designs, Codes and Cryptography, 2000, 19: 147-171.
  • 9KOBLITZ N, MENEZES A. Pairing-based cryptography at high security levels[A]. Cryptography and Coding 2005, LNCS 3796[C]. Springer-Verlag, 2005. 13-36.
  • 10BARRETO P S L M, KIM H Y, LYNN B, et al. Efficient algorithms for pairing-based crypto systems[A]. Advances in Crypto 2002[LNCS 2442][C]. Springer-Verlag, 2002. 354-369.

二级参考文献9

  • 1Sandro R, David H. A Survey of Key Management for Secure Group Communication [J]. ACM Computing Surveys, 2003,35 (3) :309-329.
  • 2Challal Y, Seba H. Group key management protocols: a novel taxonomy [J]. International Journal of Information Technology, 2005,2(2): 105-118.
  • 3Burmester M, Desmedt Y. A secure and efficient conference key distribution system [C]. Eurocrypt ' 94, Italy, LNCS 950, Springer-Verlag, Berlin, 1994. 275-286.
  • 4Horng G. An efficient and secure protocol for multi-party key establishment [J]. Computer Journal, 2001, 44:463-470.
  • 5Ateniese G, Steiner M, Tsudik G. New multiparty authentication services and key agreement protocols [J]. IEEE Journal Sel. Area. Comm , 2000, 18:628-639.
  • 6Boyd C, Nieto G. Round-optimal contributory conference key agreement [C]. In: Proc. Public-Key Cryptography' 03, USA, LNCS 2567, Springer-Verlag, Berlin,2003. 161-174.
  • 7Bresson E, Chevassut O, Pointeheval D. Dynamic group DiffieHellman key exchange under standard assumptions [C]. Advances in Cryptology-Proc. Euroerypt 2002, Netherlands, LNCS 2332, Springer-Verlag, Berlin, 2002. 321-336.
  • 8Bellare M, Rogaway P. Random oracles are practical: a paradigm for designing efficient protocols [C]. ACM CCS' 93, ACM Press, New York, 1993.62-73.
  • 9Schnorr C P. Efficient signature generation for smart cards [J]. Journal of Cryptology, 1991,4(3) : 161-175.

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部