期刊文献+

γ-Reθ转捩模型在内部冷却叶片中的应用 被引量:2

APPLICATION OF γ-Re_θ TRANSITION MODEL FOR INTERNAL COOLING SIMULATION
下载PDF
导出
摘要 燃气轮机内部通流冷却叶片的流动传热特性对于燃机的整体效率有着重要的影响,而叶片表面的转捩流场一直是阻碍对叶片冷却性能进行精确分析的主要因素。本文采用SST湍流模型及γ-Re_θ转捩模型对MARKⅡ叶型进行数值模拟,通过分析叶栅通道内传热特性以考察该转捩模型的适应性,肯定了该转捩模型对于湍流边界层发生位置判断的正确性,以及对转捩发生点上游叶片表面温度变化趋势的预测的正确性。同时本文指出γ-Re_θ转捩模型与湍流模型结合时可能存在对湍动能过渡抑制的问题,有待进一步研究。 The flow characters and heat transfer of the blade with an internal cooling system have a great impact on the whole efficicncy of a gas tm'bine while the transition is the main obstacle in the numerical analysis. In this paper, the Gamma-Re theta transition model combined with the SST turbulence model is applied to analyze the heat transfer of a Mark Ⅱ blade. The prediction of the onset of turbulence layer is proven to be satisfied, and the trend of the blade surface temperature before the transition is also captured through the model. Meanwhile, it is pointed out that the turbulent kinetic energy might be suppressed in the laminar layer before the bypass transition due to the combination of the transition model and the turbulence model.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2009年第11期1849-1852,共4页 Journal of Engineering Thermophysics
基金 973项目“燃气轮机若干关键科学技术问题的研究”资助(No.2007CB210100)
关键词 转捩 燃气轮机 耦合传热 内部通流冷却 数值模拟 transition gas turbine conjugate heat transfer internal cooling numerical simulation
  • 相关文献

参考文献11

  • 1董平,黄洪雁,冯国泰.高压燃气涡轮径向内冷叶片气热耦合的数值分析[J].航空动力学报,2008,23(2):201-207. 被引量:32
  • 2Bruno Facchini, Andrea Magi, Alberto Scotti Del Greco. Conjugate Heat Transfer Simulation of a Radially Cooled Gas Turbine Vane. ASME GT2004-54213, 2004.
  • 3R E Mayle. The Role of Laminar-Turbulent Transition in Gas Turbine Engines, The 1991 IGTI Scholar Lecture.
  • 4F R Menter. Transition Modeling for General Purpose CFD Codes. Flow Turbulence Combust, 2006, 77: 277- 303.
  • 5Hylton L D, Mihelc M S, Turner E R, et al. Analytical and Experimental Evaluation of the Heat Transfer Distri- bution over the Surface of Turbine Vanes. NASA Paper No. CR-168015, 1983.
  • 6Mayle R E. The Path to Predicting Bypass Transition. Journal of Turbomachinery, 1997, 119:405-411.
  • 7Dieter Bohn. Combined Aerodynamic and Thermal Analysis of a High-pressure Turbine Nozzle Guide Vane. In: Proceedings of the 1995 Yokohama International Gas Turbine Congress, 1995.
  • 8Jiang Luo, Eli H Razingsky. Conjugate Heat Transfer Analysis of a Cooled Turbine Vane Using the V2F Turbulence Model. Journal of Turbomachinery, 2007, 129: 773-781.
  • 9Menter F R. TwoFEquation Eddy Viscosity Turbulence Models for Engineering Applications, AIAA Journal, 1994, 32(8): 1598 -1605.
  • 10Menter F R, Langtry R B. A Correlation-Based Transition Model Using Local Variables Part Ⅰ-Model Formulation. ASME GT2004-53452, 2004.

二级参考文献12

  • 1Han J C, Dutta S, Ekkad S. Gas turbine heat transfer and cooling technology [M]. London: Taylor & Francis, 2000.
  • 2Dunn M G. Convective heat transfer and aerodynamics in axial flow turbines[J]. ASME Journal of Turbo-machinery, 2001, 123: 637-686.
  • 3Hylton LD, Milhec M S, Turner E R, et al. Analytical and experimental evaluation of the heat transfer distribution over the surface of turbine vanes[R]. NASA-CR168015, 1983.
  • 4York W D, Leylek J H. Three-dimensional conjugate heat transfer simulation of an internally-cooled gas turbine vane [R]. ASME Paper GT2003-38551.
  • 5Zecchi S, Arcangeli L, Facchini B. Features of a cooling system simulation tool used in industrial preliminary design stage[R]. ASME Paper GT2004-53547.
  • 6Facchini B, Magi A, Greco A S D. Conjugate heat transfer simulation of a radially cooled gas turbine vane[R]. ASME Paper GT2004-54213.
  • 7Jiang Luo, Razinsky E H. Conjugate heat transfer analysis of a cooled turbine vane using the V2F turbulence roodel [R]. ASME Paper GT2006-91109.
  • 8Allegheny Ludlum Corporation Company. Stainless steel types 309 and types 310[S/OL]. Allegheny Ludlum Cot potation Company, 2002. http://www. alleghenyludlum. com/ludlum/Documents.
  • 9Menter F R, Langtry R B, Likki S R, et al. A correlation-based transition using local variables part I-model formulation[R].ASME Paper 2004 GT-53452.
  • 10Steelant J, Dick E. Modeling of laminar-turbulent transitional for high freestream turbulence[J]. Journal of Fluids Engineering, 2001,123 : 22-30.

共引文献31

同被引文献14

  • 1周驰,王强,郭兆元,黄家骅,冯国泰.气冷涡轮气热耦合数值模拟[J].推进技术,2009,30(5):566-570. 被引量:7
  • 2王强,郭兆元,周驰,颜培刚,冯国泰,王仲奇.考虑转捩的跨声速气冷涡轮叶片气热耦合计算[J].航空动力学报,2009,24(12):2703-2710. 被引量:3
  • 3符松,王亮.湍流转捩模式研究进展[J].力学进展,2007,37(3):409-416. 被引量:46
  • 4Bohn D,Heuer T. Conjugate Flow and Heat Transfer Cal- culations of a High-Pressure Turbine Nozzle Guide Vane [ R]. AIAA 2001-3304.
  • 5Chmielniak T, Weoblewski W, Nowak G, et al. Coupled A-nalysis of Cooled Gas Turbine Blades [ R ]. ASME 2003- GT-38657.
  • 6Facchini B, Magi A, Scotti A, et al. Conjugate Heat Trans- fer Simulation of a Radial Cooled Gas Turbine Vane[ R]. ASME 2004-GT-54213.
  • 7Hyhon L D, Milhec M S,Turner E R, et al. Analytical and Experimental Evaluation of the Heat Transfer Distribution over the Surface of Turbine Vanes [ R ]. NASA-CR- 168015,1983.
  • 8Bradshaw P. Turbulenee:The Chief Outstanding Diffieuhy of Our Subject[ J]. Experiment Fluids, 1994,16:203-216.
  • 9Walters D K, Leylek J H. hnpact of Film-Cooling Jets on Turbine Aerodynamic Losses [ J]. ASME Journal Turbom- ach ,2000,122:53-55.
  • 10Volino R J. A New Model for Free-Stream Turbulence Effects on Boundary Layers [ J ]. ASME Journal Turbom- ach, 1998,120:613-620.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部