期刊文献+

基于SLIQ决策树算法的研究 被引量:3

Research on Algorithm Based on SLIQ Decision Tree
下载PDF
导出
摘要 提出一种改进的SLIQ决策树分类算法,克服原有SLIQ算法需要大量计算决策树每个节点的吉尼指数(GINIIndex)的缺点。一是给出数据分布密度的基本概念,并在GINI指标的基础上利用数据分布密度差改进SLIQ;二是将SLIQ算法应用到综合评价中去。实例结果表明,算法改进后,寻找最佳分裂方案的GINI指标的个数大大减少,缩减计算量,降低排序成本和寻找最佳分裂点的代价,简化决策树的规模。 Proposes an improved SLIQ decision tree classification algorithm, overcomes the shortcomings of the original SLIQ algorithm which needs to calculate numerous GINI indexes of each decision tree node. Introduces the concept of the Density of Data Distribution (D3), and improves the SLIQ algorithm with GINI index based on the ED3. Then adopts the new SLIQ in synthetic evaluation. The result in the example demonstrates that the number of the GINI index is reduced in the improved algorithm while searching the optimal split scheme, and cuts down the cost of sort and the optimal split point, simplifies the size of decision tree.
作者 张华成
出处 《现代计算机》 2009年第10期54-56,83,共4页 Modern Computer
关键词 SHQ 数据分布密度 评价 SLIQ (Supervised Learning In Quest) Density of Data Distribution Evaluation
  • 相关文献

参考文献4

  • 1Manish Mehta, Rakesh Agrawal and Jorma Rissanen. SLIQ: a Fast and Scalable Classifier for Data Mining. IBM Almaden Research Center,1996.
  • 2Chandra, B., Varghese, P.P.On Improving Efficiency of SLIQ Decision Tree Algorithm. Neural Networks, 2007. IJC- NN 2007. International Joint Conference on 12-17 Aug. 2007 Page(s): 66-71.
  • 3Hongwen Yan,Rui Ma,Xiaojiao Tong. SLIQ in Data Mining and Application in the Generation Unit's Bidding Decision System of Electricity Market Power Engineering Conference, 2005. IPEC 2005. The 7th International Nov. 29 2005-Dec. 2 2005 Page(s):1-137.
  • 4Chandra, B., Varghese, P.P.. Fuzzy SLIQ Decision Tree Algorithm Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on Volume 38, Issue 5, Oct. 2008 Page (s):1294-1301.

同被引文献56

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部