期刊文献+

反向建模方法在火电厂关键参数建模中的应用 被引量:10

Application of Reversed Modeling Method in Power Plant Critical Parameters Modeling
下载PDF
导出
摘要 提出在火电厂关键参数建模中采用反向建模方法,以规避传统建模方法在实际应用中的建模难题.以超临界直流锅炉中间点温度为例,利用某600MW超临界机组的实际运行数据,采用反向建模方法建立了该参数的数学模型.建模算法选用最小二乘支持向量机(LS-SVM),应用粒子群算法(PSO)解决了LS-SVM参数寻优问题,并将PSO-LS-SVM所得模型与LS-SVM、偏最小二乘(PLS)以及BP神经网络所得模型进行了对比,结果表明:基于PSO-LS-SVM的中间点温度数学模型计算速度快、精度高,验证了反向建模思想的有效性和可行性. Reversed modeling method was proposed to avoid the difficulty of the traditional modeling method in power plant critical parameters modeling. Based on the actual operation data of a 600 MW supercrifical once-through boiler, mathematic model of the intermediate point temperature was constructed by reversed modeling method. The modeling algorithm was least square support vector machines (LS-SVM), and particle swarm optimization (PSO) was used to solve the LS-SVM optimal parameters question. A comparison has been made among models respectively obtained by PSO-LS-SVM, LS-SVM, partial least square(PLS), BP artificial neural networks(BP-ANN). Results show that with the intermediate point temperature model based on PSO-LS-SVM, faster and accurate calculation can be achieved, proving the reversed modeling method to be effective and feasible.
出处 《动力工程》 CSCD 北大核心 2009年第11期1008-1012,共5页 Power Engineering
基金 国家自然科学基金资助项目(50776029)
关键词 火电厂 超临界直流锅炉 反向建模方法 中间点温度 最小二乘支持向量机 粒子群算法 thermal power plant supercritical once-through boiler reversed modeling method intermediate point temperature least square support vector machines particle swarm optimization
  • 相关文献

参考文献7

二级参考文献68

共引文献182

同被引文献90

引证文献10

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部