期刊文献+

一类具有饱和接触率SEIQS模型的分析

Analysis of a kind of SEIQS model with saturation contact rate
下载PDF
导出
摘要 研究了一类具有饱和接触率,且潜伏期、染病其均传染的SEIQS流行病模型.在模型的不变子集上先求出流行病的阈值R0,当R0≤1时,无病平衡点P0存在,且全局渐近稳定;当R0>1时,无病平衡点P0不稳定,地方病平衡点P*存在且全局渐近稳定. A kind of SEIQS epidemic model with saturation contact rate was studied,which has infective force in both latent period and infected period.The expression of threshold value R0 was extracted on the epidemic model invariable subset.If R0≤1,then the disease-free equilibrium point P0 is of global asymptotic stability;if R0>1,the disease-free point P0 is of instability;the local epidemic equilibrium point P* exists and has global asymptotic stability.
出处 《上海理工大学学报》 CAS 北大核心 2009年第5期463-468,共6页 Journal of University of Shanghai For Science and Technology
基金 上海市高校选拔培养优秀青年教师科研专项基金资助项目(JTZ08003)
关键词 传染病模型 有效接触率 阈值 全局稳定性 epidemic model effective contact rate threshold value global stability
  • 相关文献

参考文献4

二级参考文献17

  • 1丁善仕,王辅俊.具有非线性接触率的SILI流行病模型[J].生物数学学报,1994,9(2):52-59. 被引量:5
  • 2王拉娣.具有非线性传染率的两类传染病模型的全局分析[J].工程数学学报,2005,22(4):640-644. 被引量:16
  • 3Hethcote H W. The mathematics of infectious disease[J]. SIAM Review, 2000;42(2):599-653.
  • 4Cappasso V. Mathematical structures of epidemic systems [M]. Heidelberg: Springer-Verlag, 1993.
  • 5Busenberg S, van den Driessche P. Analysis of a disease transmission model in a population with varying size[J]. J Math Biol, 1990;28(2):257-270.
  • 6Hethcote H W, van den Driessche P. Some epidemiological models with nonlinear incidence[J]. J Math Biol,1991;28(2):271-287.
  • 7Ruan Shigui, Wang Wendi. Dynamical behavior of an epidemic model with a nonlinear incidence rate[J]. J Diff Equs, 2003;188(1):135-163.
  • 8Liu Wei-min, Hetchcote H W, Levin S A. Dynamical behavior of epidemiological model with nonlinear incidence rates[J]. J Math Biol, 1987;25(2):359-380.
  • 9Liu Wei-min, Levin S A, Iwasa Yoh. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J]. J Math Biol, 1986;23(1):187-204.
  • 10HEESTERBEEK J A P,METZ J A J.The saturating contact rate in marriage and epidemic models[J].J Math Biol,1993,31:529-539.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部