摘要
研究了一类具有饱和接触率,且潜伏期、染病其均传染的SEIQS流行病模型.在模型的不变子集上先求出流行病的阈值R0,当R0≤1时,无病平衡点P0存在,且全局渐近稳定;当R0>1时,无病平衡点P0不稳定,地方病平衡点P*存在且全局渐近稳定.
A kind of SEIQS epidemic model with saturation contact rate was studied,which has infective force in both latent period and infected period.The expression of threshold value R0 was extracted on the epidemic model invariable subset.If R0≤1,then the disease-free equilibrium point P0 is of global asymptotic stability;if R0>1,the disease-free point P0 is of instability;the local epidemic equilibrium point P* exists and has global asymptotic stability.
出处
《上海理工大学学报》
CAS
北大核心
2009年第5期463-468,共6页
Journal of University of Shanghai For Science and Technology
基金
上海市高校选拔培养优秀青年教师科研专项基金资助项目(JTZ08003)
关键词
传染病模型
有效接触率
阈值
全局稳定性
epidemic model
effective contact rate
threshold value
global stability