期刊文献+

Robust的分布式k中心聚类算法的研究与实现 被引量:2

Robust distributed k-mediods clustering algorithm
下载PDF
导出
摘要 并行处理的研究在数据挖掘中是十分必要的。在理论分析的基础上,提出在对经典串行PAM算法进行并行时应如何从局部聚类信息生成完备的全局聚类信息,据此提出了算法DPAM,在提高计算性能的同时,使聚类质量等价于相应串行PAM算法。为提高并行算法的执行效率,还介绍了如何减小计算结点间通信的代价。最后对提出的算法进行性能分析和实验,说明该算法是高效可行的。 Parallel is very important in data mining.This paper proposes a distributed k-mediods clustering algorithm by analyzing how to get satisfactory clustering information from local information.Its quality is equivalent to serial PAM algorithm but its calculation performance is higher.The paper gives still the way that improves the efficiency of parallel PAM algorithm by reducing the cost of communication, analyzes the performance of the algorithm and gives the result of experiment.This explains that the algorithm is effective and reliable.
作者 陶冶 曾志勇
出处 《计算机工程与应用》 CSCD 北大核心 2009年第32期122-125,共4页 Computer Engineering and Applications
基金 云南省自然科学基金No.2007G079M 云南省教育厅科学研究基金项目No.6Y0159D~~
关键词 聚类 围绕中心点的划分(PAM)算法 并行 消息传递接口(MPI) clustering Partitioning Around Mediods(PAM) algorithm parallel Message Passing Interface (MPI)
  • 相关文献

参考文献1

二级参考文献11

  • 1倪巍伟,陆介平,孙志挥.基于向量内积不等式的分布式k均值聚类算法[J].计算机研究与发展,2005,42(9):1493-1497. 被引量:15
  • 2Inderjit S Dhillon,Dharmendra S Modha.A data-clustering algorithm on distributed memory multiprocessors[OL].http://www.cs.rpi.edu/-zaki/WKDD99/dhillon.ps.gz,1999
  • 3S Datta,C Giannella,H Kargupta.K-means clustering over a large,dynamic network[C].2006 SIAM Conf on Data Mining,Bethesda,MD,2006
  • 4Harsha S Nagesh,Sanjay Goil,Alok Choudhary.A scalable parallel subspace clustering algorithm for massive data sets[C].The 2000 Int'l Conf on Parallel Processing,Toronto,Canada,2000
  • 5Sally McClean,Bryan Scotney,Philip Morrow,et al.Knowledge discovery by probabilistic clustering of distributed databases[J].Data & Knowledge Engineering,2005,54(2):189-210
  • 6S Datta,C Giannella,H Kargupta.K-means clustering over a large,dynamic network[C].2006 SIAM Conf on Data Mining,Bethesda, MD,2006
  • 7E Januzaj,H P Kriegel,M Pfeifle.DBDC:Density-based distributed clustering[C].The 9th Int'l Conf on Extending Database Technology (EDBT),Heraklion,Greece,2004
  • 8M Ester M,H P Kriegel,J Sander,et al.A density based algorithm of discovering clusters in large spatial databases with noise[C].In:Proc of the 2nd Int'l Conf on Knowledge Discovery and Data Mining.Menlo Park,CA:AAAI Press,1996.226-231
  • 9Karin Kailing,Hans-Peter Kriegel,Peer Kroger.Density-connected subspace clustering for high-dimensional data[C].SIAM Int'l Conf on Data Mining(SIAM DM'04),Orlando,FL,2004
  • 10N Beckmann,H-P Kriegel,R Schneider,et al.The R*-tree:An efficient and robust access method for points and rectangles[C].The 1990 ACM SIGMOD Int'l Conf on Management of Data,Atlantic City,USA,1990

共引文献7

同被引文献26

  • 1伍洋,钟鸣,姜艳,李石君.面向审计领域的短文本分类技术研究[J].微电子学与计算机,2015,32(1):5-10. 被引量:7
  • 2韩家炜,堪博,范明.数据挖掘概念与技术[M].孟小峰,译.北京:机械工业出版社,2007.223-258.
  • 3WANG Gang-qiang,ZHONG Cheng, YANG Liu. Parallel selection using multi-level partitioning and filtering for muhi-core architectures [ J ]. International Journal of Advancements in Computing Technology,2013,5 (3) : 692-700.
  • 4PARK H S, JUN C H. A simple and fast algorithm for k-medoids clustering[ J]. Expert Systems with Applications, 2009, 36(2): 3336 - 3341.
  • 5DEAN J, GHEMAWAT S. Mapreduce: simplifield data processing on large clusters [ J ]. Communications of the ACM, 2008,51(1) : 107-113.
  • 6YU Y, ISARD M, FETTERLY D, et al. DryadLINQ: A system for general-purpose distributed data-parallel computing u- sing a high-level language [ C ]//Proceedings of the 8 th USENIX Symposium on Operating Systems Design and Implementa-tion( OSDI 2008). New Orleans, USA : USENIX Association, 2008 : 1-14.
  • 7张著英,黄玉龙,王翰虎.一个高效的KNN分类算法[J].计算机科学,2008,35(3):170-172. 被引量:55
  • 8林建仁,陆佩忠.一种基于PDS、TIE和PMI的快速PAM聚类算法[J].计算机应用与软件,2008,25(9):8-11. 被引量:4
  • 9唐天兵,谢祥宏,申文杰,韦凌云,严毅.多核CPU环境下的并行遗传算法的研究[J].广西大学学报(自然科学版),2009,34(4):546-550. 被引量:7
  • 10李静滨,杨柳,华蓓.基于多核平台并行K-Medoids算法研究[J].计算机应用研究,2011,28(2):498-500. 被引量:9

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部