期刊文献+

基于GLR算法的新型概率句法分析器

New probabilistic syntactic analysis parser based on GLR algorithm
下载PDF
导出
摘要 为了提高句法分析器的分歧能力和分析准确率,结合上下文无关概率模型PCFG和头驱动概率模型HDSM各自的优点,提出了一种新型的概率模型PCFG_HDSM,并基于GLR算法,实现了一个新型的汉语句法分析器。在词性标注阶段,通过对助词的详细标注使部分歧义在规则阶段就被去除掉,提高了系统消歧的能力。经过开放测试,准确率和回归率分别达到82.8%、74.7%,与其他分析器分析结果比较有了较大提高,证明新模型PCFG_HDSM确实提高了分析器的分歧能力。 To improve the capacity of parser's processing disambiguity and the precision,this paper proposes a syntactic parsing model PCFG_HDSM based on GLR algorithm,the model combines the strongpoint of PCFG (Probabilistic Context-Free Grammar) and that of HDSM (Head-Driven Statistical Models),and it also realizes a new syntactic parser for Chinese based on the new model.In the stage of words parsing,by adding detail information of auxiliary words into the rules some ambiguities are removed while processing the rules of system,by this way,the system obtains a high precision.In the opened test,the label precision and label recall are 82.8% and 74.7% respectively.Compared with the results of other Prop programs,it improves a lot.lt proves that the new model PCFG_HDSM can improve the capacity of parser's processing disambiguity.
作者 丁向民 徐斌
出处 《计算机工程与应用》 CSCD 北大核心 2009年第32期130-132,136,共4页 Computer Engineering and Applications
关键词 GLR算法 上下文无关文法(PCFG) 头驱动的概率模型(HDSM) 概率句法分析 GLR algorithm Probabilistic Context-Free Grammar(PCFG) Head-Driven Statistical Models (HDSM) probabilistic syntactic analysis
  • 相关文献

参考文献5

二级参考文献54

  • 1周明,黄昌宁,张敏,白栓虎,吴升.统计与规则并举的汉语句法分析模型[J].计算机研究与发展,1994,31(2):40-49. 被引量:8
  • 2杨沐昀 赵铁军 于浩.自底向上的汉语句法标注体系设计与实践[A].黄昌宁主编.自然语言理解与机器翻译[C].南京清华大学出版社,2001.160—166.
  • 3C.D. Manning H. Schutze Foundations of statistical natural language processing The MIT Press. Cambridge, Massachusetts, London, England,.
  • 4T. L. Booth and R. A. Thompson. Applying Probability Measures to Abstract Languages. IEEE Transactions on Computers, 1973,C- 22(5), :442-450.
  • 5E, Black F. Jelinek J. Lafferty D, Magerman Towerds history-based grammars: using richer models for probabilistic parsing in Proc.ACL'93,Columbus,OH,1993:31-37
  • 6David M. Magerman. Natural Language Parsing as Statistical Pattern Recognition. Ph.D. thesis Stanford University. 1994.
  • 7Marcus, Mitehell Deterministic Parsing and Description Theory in P. Whitelock, M. Wood, H. Somers & P.Bennett (eds) Linguistie Theory and Computer Applications, New York, Academic Press, 1980:69-112.
  • 8Steve Abney. Rapid incremental parsing with repair. In Proceedings of the 6th New OED Conference:Electronic Text Research, 1990:1-9.
  • 9A. Ratnaparkhi Learning to parse natural language with naximum entropy models Machine learning 1999(34) :151-178.
  • 10M. Collins. Head-Driven Statistical Models for Natural Language Parsing. Ph.D. Thesis, The University of Pennsylvania. 1999.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部