期刊文献+

Soft Sensing Modelling Based on Optimal Selection of Secondary Variables and Its Application 被引量:2

Soft Sensing Modelling Based on Optimal Selection of Secondary Variables and Its Application
下载PDF
导出
摘要 The composition of the distillation column is a very important quality value in refineries, unfortunately, few hardware sensors are available on-line to measure the distillation compositions. In this paper, a novel method using sensitivity matrix analysis and kernel ridge regression (KRR) to implement on-line soft sensing of distillation compositions is proposed. In this approach, the sensitivity matrix analysis is presented to select the most suitable secondary variables to be used as the soft sensor's input. The KRR is used to build the composition soft sensor. Application to a simulated distillation column demonstrates the effectiveness of the method. The composition of the distillation column is a very important quality value in refineries, unfortunately, few hardware sensors are available on-line to measure the distillation compositions. In this paper, a novel method using sensitivity matrix analysis and kernel ridge regression (KRR) to implement on-line soft sensing of distillation compositions is proposed. In this approach, the sensitivity matrix analysis is presented to select the most suitable secondary variables to be used as the soft sensor's input. The KRR is used to build the composition soft sensor. Application to a simulated distillation column demonstrates the effectiveness of the method.
出处 《International Journal of Automation and computing》 EI 2009年第4期379-384,共6页 国际自动化与计算杂志(英文版)
基金 supported by National Basic Research Program of China (973 Program) (No. 2007CB714006)
关键词 Distillation column sensitivity matrix analysis ridge regression kernel ridge regression (KRR) soft sensor Distillation column, sensitivity matrix analysis, ridge regression, kernel ridge regression (KRR), soft sensor
  • 相关文献

参考文献10

  • 1M. Kano,N. Showchaiya,S. Hasebe,I. Hashimoto.In- ferential Control of Distillation Compositions: Selection of Model and Control Configuration[].Control Engineering.2003
  • 2B. Joseph,C. B. Brosilow.Inferential Control of Processes: Part I. Steady State Analysis and Design[].American Institute of Chemical Engineers Journal.1978
  • 3Mou Chen,Chang-Sheng Jiang,Qing-Xian Wu.Sensor Fault Diagnosis for a Class of Time Delay Uncertain Nonlinear Systems Using Neural Network[J].International Journal of Automation and computing,2008,5(4):401-405. 被引量:4
  • 4A. E. Hoerl,R W. Kennard.Ridge Regression: Biased Estimation for Non-orthogonal Problems[].Technometrics.2000
  • 5A. E. Hoerl,R. W. Kennard.Ridge Regression: Application for Non-orthogonal Problems[].Technometrics.1970
  • 6C. Saunders,A. Gammerman,V. Vovk.Ridge Regression Learning Algorithm in Dual Variables[].Proceedings of the th International Conference on Machine Learning.1998
  • 7V. N. Vapnik.The Nature of Statistical Learning Theory[]..1999
  • 8Mejdell T,Skogestad S.Estimation of Distillation Compositions from Multiple Temperature Measurements Using Partial- Least - Squares Regression[].Industrial and Engineering Chemistry Research.1991
  • 9Mejdell T. and Skogestad S.Composition Estimator in a Pilot-Plant Distillation Column Using Multiple Temperatures[].Industrial and Engineering Chemistry Research.1991
  • 10Eliana Z,Massimiliano B,Seborg Dale E.Estimating product composition profiles in batch distillation via partial least squares regression[].Control Engineering.2004

二级参考文献20

  • 1[1]S.Simani,C.Fantuzzi,S.Beghelli.Diagnosis Techniques for Sensor Faults of Industrial Processes.IEEE Transac-tions on Control Systems Technology,vol.8,no.5,pp.848-855,2000.
  • 2[2]P.M.Frank.Fault Detection in Dynamic Systems Using Analytical and Knowledge-based Redundancy-A Survey and Some New Results.Automatics,vol.26,no.3,pp.459-474,1990.
  • 3[3]J.J.Gertler.Survey of Model-based Failure Detection and Isolation in Complex Plants.IEEE Control Systems Maga-zine,vol.8,no.6,pp.3-11,1998.
  • 4[4]S.S.Ge,H.Fan,T.H.Lee.Adaptive Neural Network Control of Nonlinear Systems with Unknown Time Delays.IEEE Transactions on Automatic Control,vol.48,no.11,pp.2004-2010,2003.
  • 5[5]F.H.Hsiao,J.D.Hwang.Stabilization of Nonlinear Sin-gularly Perturbed Multiple Time-delay Systems by Dither.Journal of Dynamic Systems,Measurement,and Control,vol.118,no.1,pp.176-181,1996.
  • 6[6]S.K.Nguang.Robust Stabilization of a Class of Time-delay Nonlinear Systems.IEEE Transactions on Automatic Con-trol,vol.45,no.4,pp.756-762,2000.
  • 7[7]J.H.Park.On the Design of Observer-based Controller of Linear Neutral Delay-differential Systems.Applied Mathe-matics and Computation,no.150,no.1,pp.195-202,2004.
  • 8[8]Z.Wang,B.Huang,H.Unbehauen.Robust H∞ Observer Design of Linear Time-delay Systems with Parametrie Un-certainty.Systems & Control Letters,vol.42,no.4,pp.303-312,2001.
  • 9[9]S.Raghavan,J.K.Hedriek.Observer Design for a Class of Nonlinear Systems.International Journal of Control,vol.59,no.2,pp.515-528,1994.
  • 10[10]Y.Xiong,M.Saif.Sliding Mode Observer for Nonlinear Un-certain Systems.IEEE Transactions on Automatic Control,vol.46,no.12,pp.2012-2017,2001.

共引文献3

同被引文献9

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部