期刊文献+

柔性多体系统动力学新型广义-α数值分析方法 被引量:14

New Generalized-α Algorithms for Multibody Dynamics
下载PDF
导出
摘要 结合隐式数值积分解耦法,提出柔性多体系统动力学的新型广义-α数值分析方法。利用新型广义-α法乘以积分步长h或h2缩小因子的形式将积分步长引入至系统雅可比矩阵计算,获得离散的多体系统动力学方程和约束方程。基于隐式数值积分解耦法,获得系统变量的解耦方程组和系统雅可比矩阵。通过数值实例研究新型广义-α法的数值精度、收敛阶次、稳定性和计算效率。理论研究和数值分析表明,新型广义-α法极大减小了系统雅可比矩阵函数的估计数目和Newton-Raphson迭代次数,从而大大地减小了柔性多体系统动力学分析的求解规模,同时满足位移、速度及加速度约束。高效、高精度、可控数值阻尼的新型广义-α数值分析方法,对具有多柔体、接触冲击和摩擦等刚性性质的柔性多体系统动力学分析具有重要的理论参考意义和工程应用价值。 For analysis of multibody dynamics, a new generalized-α algorithm is proposed on the basis of implicit numerical integration decoupling algorithms. By applying the new generalized-α algorithm and introducing the scaling factor h or h2 of integration stepsize into the calculations of Jacobian matrix, discrete equations of multi-body dynamics and constraints equations are obtained. Decoupling equations for systems' variables and decoupling Jacobian matrix are obtained on the basis of implicit numerical integration decoupling algorithms, thereby improving the efficiency of calculation and avoiding poor Jacobian matrix. Accuracy, convergence, stability and efficiency analysis of the new generalized-α algorithm are carried out through numerical examples. Theoretical study and numerical analysis show that the new generalized-α algorithm reduces the number of evaluations of Jacobian matrix function, the iterations of Newton-Raphson and the calculations of dimensions of multi-flexible body dynamics greatly. The new generalized-α algorithm featuring efficiency, accuracy and controllable numerical damping has important theoretical reference meaning and practical application value to mechanical systems with multi flexible bodies, contact-impact and friction.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2009年第10期53-60,共8页 Journal of Mechanical Engineering
基金 云南省应用基础研究基金(2006E021Q) 云南省省院省校合作基金(2004YX12) 云南省教育厅科技研究基金(5Y0553D)资助项目
关键词 广义-α方法 HHT方法 隐式数值积分解耦法 时间积分算法 微分—代数方程 多体动力学 Generalized alpha method HHT method Implicit numerical integration decoupling algorithm Time integration algorithm Differential algebraic equation Multi-body dynamics
  • 相关文献

参考文献20

  • 1NEGRUT D,RAMPALLI R,OTTARSSON G.On an implementation of the HHT method in the context of index 3 differential algebraic equations of multibody dynamics[J].ASME,Computational and Nonlinear Dynamics,2007,2:73-85.
  • 2JAY L O,NEGRUT D.Extensions of the HHT-method to differential-algebraic equations in mechanics[J].Elec-tronic Transactions on Numerical Analysis,2007,26:190-208.
  • 3JAY L O,NEGRUT D.A second order extension of the generalized-alpha method for constrained systems in mechanics[C]//Proceedings of Multibody Dynamics 2007,Eccomas Thematic Conference,June 25-28,2007,Milano,Italy.Berlin:Springer,2008:143-158.
  • 4HILBER H,HUGHES T,TAYLOR R.Improved nume-rical dissipation for time integration algorithms in structural dynamics[J].Earthquake Engineering and Structural Dynamics,1977,5:283-292.
  • 5ARNOLD M,BRüLS O.Convergence of the genera-lized-α scheme for constrained mechanical systems[J].Multibody System Dynamics,2007,6:22-40.
  • 6BRüLS O,ARNOLD M.The generalized-α scheme as a linear multi-step integrator:Towards a general mecha-tronic simulator[J].Journal of Computational and Nonlinear Dynamics,2008,3:41-57.
  • 7BRüLS O,GOLINVAL J C.The generalized-α method in mechatronic applications[J].Z.Angew.Math.Mech.,2006,86:748-758.
  • 8BRüLS O,GOLINVAL J C.On the numerical damping of time integrators for coupled mechatronic systems[J].Computer Methods in Applied Mechanics and Engineering,2006,32:212-227.
  • 9GéRADIN M,CARDONA A.Flexible multibody dyna-mics:A finite element approach[M].New York:Wiley,2001.
  • 10YEN J,PETZOLD L R.A time integration algorithm for flexible mechanism dynamics:The DAE a-method[J].Computer Methods in Applied Mechanics and Engineering,1998,158:341-355.

二级参考文献50

  • 1李小军,廖振鹏,关慧敏.An explicit finite element-finite difference method for analyzing the effect of visco-elastic local topography on the earthquake motion[J].Acta Seismologica Sinica(English Edition),1995,8(3):447-456. 被引量:6
  • 2李小军,廖振鹏.非线性结构动力方程求解的显式差分格式的特性分析[J].工程力学,1993,10(3):141-148. 被引量:10
  • 3景立平.波动有限元方程显式逐步积分格式稳定性分析[J].地震工程与工程振动,2004,24(5):20-26. 被引量:3
  • 4[1]Ted Belyschko, Wang Kam Liu, Brain Moran. Nonlinear finite elements for continua and structures [M]. John Wiley & Sons Ltd. USA, 2000, Chapter 6.
  • 5[2]Alicia Serfaty de Markus, Ronald E Mickens. Suppression of numerically induced chaos with nonstandard finite difference schemes [J]. Journal of Computational and Applied Mathematics, 1999, 106: 317-324.
  • 6[3]Kaiping Yu, Jie Zhao, Deguang Liu, Shiwei Pang, Jingxiang Zou. A new family of generalized-x time integration algorithms for structural dynamics with nonlinear stiffens [C]. Computational Mechanics WCCMVI in Conjunction with APCOM'04, 2004. 5-10. Beijing, China.
  • 7[4]S Erlicher, L Bonaventura, O S Bursi. The analysis of the Generalized-a method for nonlinear dynamic problems[J]. Computational Mechanics, 2002, 28: 83-104.
  • 8[5]Hairer, G Wanner. Solving ordinary differential equations, Part2, Stiff and Differential-Algebraic Problems [M]. Springer-Verlag, New York, 1991.
  • 9[6]Robert Piche. An L-stable Rosenbrock method for step-by-step time integration in structural dynamics[J]. Comput. Meth. Appl. Mech. Engrg., 1995, 126: 343-354.
  • 10[7]T J R Hughes. The finite element method: linear static and dynamic finite element analysis [M]. Prentice-Hall, Englewood Cliffs, New Jersey, 1987. 459-552.

共引文献20

同被引文献251

引证文献14

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部