期刊文献+

Information Geometry for Random Walk

Information Geometry for Random Walk
下载PDF
导出
摘要 The random walk(RW)is investigated from the viewpoint of information geometry and shown to be an exponential family distribution.It has a dual coordinate system and a dual geometric structure.Then submanifolds of RW manifold is studied,and the e-flat hierarchical structure and the orthogonal foliations of RW manifold are obtained.Finally,using the Kullback-Leibler divergence,the projections are given from the RW manifold to its submanifolds. The random walk(RW)is investigated from the viewpoint of information geometry and shown to be an exponential family distribution.It has a dual coordinate system and a dual geometric structure.Then submanifolds of RW manifold is studied,and the e-flat hierarchical structure and the orthogonal foliations of RW manifold are obtained.Finally,using the Kullback-Leibler divergence,the projections are given from the RW manifold to its submanifolds.
机构地区 School of Science
出处 《Journal of Beijing Institute of Technology》 EI CAS 2009年第3期356-360,共5页 北京理工大学学报(英文版)
基金 Sponsored by the National Natural Science Foundation of China(10871218)
关键词 information geometry random walk hierarchical structure DIVERGENCE information geometry random walk hierarchical structure divergence
  • 相关文献

参考文献1

二级参考文献4

  • 1Lin B.On the distribution and conditional heteroscedasticity in Taiwan stock prices[J].Multinational Management,2000(10):367-395.
  • 2Dodson C T J.Information geodesics for communication clustering[J].Statistical Computation and Simulation,2000,65:133-146.
  • 3Amari S,Kawanabe M.Information geometry of estimating functions in semiparametric statistical models[J].Bernoulli,1997,2(3):29-54.
  • 4Murata N,Amari S.Statistical analysis of learning dynamics[J].Signal Processing,1999,74:3-28.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部