期刊文献+

应用人工神经网络评价老年重症监护室患者的预后 被引量:1

Artificial neural network in the mortality prediction for patients in geriatric intensive care unit
下载PDF
导出
摘要 目的比较人工神经网络(ANN)和急性生理学及慢性健康状况评价Ⅱ(APACHEⅡ)评价老年重症监护室(GICU)患者死亡风险的预测能力。方法回顾分析北京大学第一医院GICU2005年1月至2006年12月收治的177例年龄≥65周岁患者的病例资料。记录患者入GICU当日的资料,计算APACHEⅡ评分和预期死亡风险。随机抽取117例患者的资料作为ANN的训练集,其余60例患者的资料作为ANN的检验集。根据APACHEⅡ的22个变量建立ANN22,根据单个变量对于预后预测的影响大小,去除影响较小的变量,分别利用10个和8个变量建立ANN10和ANN8。应用APACHEⅡ和ANN22、ANN10、ANN8预测检验集患者的死亡风险。应用受试者工作特性曲线下面积(aROC)判断ANN和APACHEⅡ的预测能力。结果ANN22和APACHEⅡ的aROC分别为0.943和0.949,差异没有统计学意义(P=0.829)。ANN10和ANN8的aROC分别为0.968和0.926。结论应用ANN预测GICU患者的死亡率与应用以Logistic回归为基础的APACHEⅡ相比,结果相当。应用较少的变量所建立的ANN预测准确性仍很高。 Objective To compare the ability of artificial neural networks(ANN) and the acute physiology and chronic health evaluation Ⅱ (APACHE Ⅱ ) to predict mortality for patients in geriatric intensive care unit (GICU). Methods The purpose of this retrospective case series was to compare ANN and APACHE Ⅱ in the mortality pridiction for a cohort of patients admitted to a seven-bed GICU in a Beijing teaching general hospital. All 177 patients were older than 65 years and consecutively admitted to our GICU from Jan 2005 to Dec 2006. The 22 variables used to obtain APACHE Ⅱ score and risk of death were collected from each patient on admission. All data were randomly allocated to either the training (n= 117) or validation set (n= 60). Three ANN models were developed using the data from the training set, namely ANN22 (trained with all the 22 variables), ANN10 (trained with the 10 highest information gain variables) and ANN8 (trained with the 8 highest information gain variables). Three ANN models and APACHE Ⅱ were used to predict mortality in the validation set. The accuracy of ANN and APACHE Ⅱ was assessed by area under the receiver operator characteristics curve (aROC). Results The aROC was 0. 943 for ANN22 and 0. 949 for APACHE Ⅱ in predicting GICU mortality(P=0. 829). For ANN10 and ANN8, the aROC was 0. 968 and 0. 926, respectively. Conclusion Both ANN and APACHE Ⅱ have similar performance in predicting GICU outcome. ANN uses fewer variables and yet is comparable to APACHE Ⅱ.
出处 《中华老年多器官疾病杂志》 2009年第5期409-413,共5页 Chinese Journal of Multiple Organ Diseases in the Elderly
关键词 人工神经网络 急性生理学及慢性健康状况评价Ⅱ 老年 重症监护室 预后 artificial neural network model acute physiology and chronic health evaluation Ⅱ elderly intensive care unit prognosis
  • 相关文献

参考文献3

  • 1周国鹏,宋以信,赵志杰.APACHE评价系统对75岁以上老年重症病人预后评价价值[J].中华内科杂志,2005,44(4):251-253. 被引量:20
  • 2Ashish Nimgaonkar,Dilip R. Karnad,S. Sudarshan,Lucila Ohno-Machado,Isaac Kohane. Prediction of mortality in an Indian intensive care unit[J] 2004,Intensive Care Medicine(2):248~253
  • 3R. Moreno,P. Morais. Outcome prediction in intensive care: results of a prospective, multicentre, Portuguese study[J] 1997,Intensive Care Medicine(2):177~186

二级参考文献5

  • 1梁建业.危重病患者病情评定法——APACHE系统的研究进展[J].中国危重病急救医学,1996,8(1):52-56. 被引量:65
  • 2Knaus WA, Draper EA, Wagner DP, et al. APACHE Ⅱ: a severity of disease classification system. Crit Care Med, 1985,13:818-829.
  • 3Knaus WA, Wagner DP, Draper EA, et al. The APACHE Ⅲ prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest, 1991,100:1619-1636.
  • 4Knaus WA, Zimmerman JE, Wagner DP, et al. APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med,1981,9:591-597.
  • 5Cook DA. Performance of APACHE Ⅲ models in an Australian ICU. Chest,2000,118:1732-1738.

共引文献19

同被引文献29

  • 1Penny W, Frost D. Neural networks in clinical medicine[J]. Med Decis Making, 1996, 16(4): 386-398.
  • 2Guerriere MR, Detsky AS. Neural networks: what are they[J]? Ann Intern Med, 1991, 115(11): 906-907.
  • 3Sifio CA, Shepardson LB, Rotondi AJ, et al. Community- wide assessment of intensive care outcomes using a physiologically based prognostic measure: implications for critical care delivery from Cleveland Health Quality Choice[J]. Chest, 1999, 115(3): 793-801.
  • 4Buchman TG, Kubos KL, Seidler AJ, et al. A comparison of statistical and connectionist models for the prediction of chronicity in a surgical intensive care unit[J]. Crit Care Med, 1994, 22(5): 750-762.
  • 5Tu JV, Guerriere MR. Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery[J]. Comput Biomed Res, 1993 26(3): 220-229.
  • 6Clermont G, Angus DC, DiRusso SM, et al. Predicting hospital mortality for patients in the intensive care unit: a comparison of artificial neural networks with logistic regression models[J]. Crit Care Med, 2001, 29(2): 291-296.
  • 7Frize M, Ennett CM, Stevenson M, et al. Clinical decision support systems for intensive care units: using artificial neural networks[J]. Med Eng Phys, 2001, 23(3): 217-225.
  • 8Nimgaonkar A, Kamad DR, Sudarshan S, et al. Prediction of mortality in an Indian intensive care unit. Comparison between APACHE II and artificial neural networks[J]. Intensive Care Med, 2004, 30(2): 248-253.
  • 9Hanson CW 3rd, Marshall BE. Artificial intelligence applications in the intensive care unit[J]. Crit Care Med, 2001, 29(2): 427-435.
  • 10Jaimes F, Fabiarz J, Alvarez D, et al. Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room[J]. Critical Care, 2005, 9(2): R150-156.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部