期刊文献+

用(1/G)-展开法求修正Kawahara方程的孤立波解 被引量:8

Solitary Wave Solutions for Modified Kawahara Equation by(1/G)-expansion Method
下载PDF
导出
摘要 利用(1/G)-展开法,借助于计算机代数系统M athem atica,获得了修正Kawahara方程的孤立波解,这里的G=G(ξ)是一阶线性常微分方程的解,(1/G)-展开法可看作是(G′/G)-展开法的一种特殊情形。 By using the(1/G)-expansion method and with the aid of computer algebra system Mathematica,the solitary wave solutions of the modified Kawahara equation are successfully obtained,where G=G(ξ) satisfies a linear first order ordinary differential equation.The(1/G)-expansion method can be thought of as a special case of the(G′/G)-expansion method proposed recently.
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2009年第5期78-81,共4页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(10171010) 河南省教育厅自然科学基金项目(2007110010) 河南科技大学青年基金项目(2008QN026)
关键词 (1/G)-展开法 修正Kawahara方程 孤立波解 齐次平衡 (1/G)-expansion method Modified Kawahara equation Solitary wave solution Homogeneous balance
  • 相关文献

参考文献13

  • 1Kawahara T. Oscillatory Solitary Waves in Dispersive Media[ J ]. J Phys Soc Japan, 1972,33 (2) :260 -264.
  • 2Bridges T J, Derks G. Linear Instability of Solitary Waves Solutions of the Kawahara Equation and It s Generalizations [ J ]. SIAM J Math Anal,2002,33(4):1356- 1378.
  • 3Kenig C E, Ponce G, Vega L. Oscillatory Integrals and Regularity of Dispersive Equations[ J]. Indiana Univ Math J, 1991, 40(1) :33 -69.
  • 4Boyd J P. Weakly non-local Solitons for Capillary-gravity Waves : Fifth Degree Korteweg-de Vries Equation [ J ]. Phys D, 1991,48(1) :129 - 146.
  • 5Grimshaw R,Joshi N. Weakly Nonlocal Solitary Waves in a Singularly Perturbed Kortweg-de Vries Equation[ J]. SIAM J Appl Math,1995,55(1) :124 - 135.
  • 6Wazwaz A M. New Solitary Wave Solutions to the Kuramoto-Sivashinsky and the Kawahara Equations [ J ]. Appl Math Comput ,2006,182 ( 2 ) : 1642 - 1650.
  • 7Wazwaz A M. New Solitary Wave Solutions to the Modified Kawahara Equation [ J ]. Physics Letters A,2007,360 ( 8 ) :588 - 592.
  • 8Lin Jin. Application of Variational Iteration Method and Homotopy Perturbation Method to the Modified Kawahara Equation [ J ]. Mathematical and Computer Modelling,2009,49 ( 3 - 4 ) :573 - 578.
  • 9Bongsoo Jang. New Exact Travelling Wave Solutions of Kawahara Type Equations [ J ]. Nonlinear Analysis, 2009,70 ( 1 ) : 510 -515.
  • 10Yusufoglu E, Bekir A, Alp M. Periodic and Solitary Wave Solutions of Kawahara and Modified Kawahara Equations by Using Sine-Cosine method [ J ]. Chaos, Solitons and Fractals, 2008,37 ( 4 ) : 1193 - 1197.

二级参考文献14

  • 1李修勇,秦青,李保安,李向正.mKdV方程的精确解[J].河南科技大学学报(自然科学版),2004,25(4):86-89. 被引量:13
  • 2李向正,张金良,王明亮.Ginzburg-Landau方程的一种解法[J].河南科技大学学报(自然科学版),2004,25(6):78-81. 被引量:11
  • 3Konopelchenko B G, Dubrovsky V G. Some New Integrable Nonlinear Evolution Equations in (2 + 1 ) Dimensions [ J ~. Physics Letters A, 1984,102 ( 1 - 2 ) : 15 - 17.
  • 4Xia T C,Lu Z S,Zhang H Q. Symbolic Computation and New Families of Exact Soliton-like Solutions of Konopelchenko- Dubrovsky Equations [ J ]. Chaos, Solitons & Fractals, 2004,20 ( 3 ) :561 - 566.
  • 5Wang D S, Zhang H Q. Further Improved F-expansion Method and New Exact Solutions of Konopelchenko-Dubrovsky Equation [ J ]. Chaos, Solitons & Fractals, 2005,25 ( 3 ) : 601 - 610.
  • 6Song L N, Zhang H Q. New Exact Solutions for the Konopelchenko-Dubrovsky Equation Using an Extended Riccati Equation Rational Expansion Method and Symbolic Computation [ J ]. Applied Mathematics and Computation, 2007,187 (2) :1373 - 1388.
  • 7Wazwaz A M. New Kinks and Solitons Solutions to the (2 + 1 )-dimensional Konopelchenko-Dubrovsky Equation [ J ]. Mathematical and Computer Modelling, 2007,45 ( 3 - 4 ) :473 - 49.
  • 8Ahmet Bekir. Application of the (G'/G)-expansion Method for Nonlinear Evolution Equations[ J ]. Phys Lett A ,2008,372 (19) :3400 - 3406.
  • 9Wang M L, Zhang J L, Li X Z. The ( G'/G)-expansion Method and Travelling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics [ J ]. Phys Lett A,2008,372 ( 4 ) :417 - 423.
  • 10Zhang S,Tong J L,Wang W. A Generalized (G'/G)-expansion Method for the mKdV Equation with Variable Coefficients [J]. Phys Lett A,2008,372(13) :2254 -2257.

共引文献18

同被引文献61

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部