期刊文献+

基于决策SVM的入侵检测技术研究 被引量:2

Research on intrusion detection technology based on SVM-decision tree
下载PDF
导出
摘要 在网络入侵检测中,数据类别不均衡训练集的使用将产生分类偏差,支持向量机是一种新型的统计学习模型,在处理小样本和学习机的推广能力上有很大的优势.针对支持向量机解决k个多类分类问题存在训练样本数据大、训练困难的问题,提出基于支持向量机的决策树训练算法,构建了基于支持向量机决策树的入侵检测系统模型.利用KDDCup99数据集,将本文提出的算法与Lee-Carter方法和1-v-R方法进行了对比实验.通过实验和比较表明,该方法的训练效率大大提高,并且具有较高的检测率. In the process of network intrusion detection, the usage of training sets with uneven class sizes will result in classification biases. Support vector machine(SVM) is a new statistical learning model, and it has great advantages in small sample and machine generalization ability. Considering the problems of larger training samples and training difficult by using SVM to disposal the multi-class classification, this paper proposed the SVM- decision tree multi-category classification training algorithm, and gave a network intrusion detection model based on SVMDT. Moreover, it compared the result from KDD Cup99 dataset and that of from "Lee-Carter" and "1-v- R". Experiment results show that the method greatly improves the efficiency of the training, and has a higher detection rate.
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2009年第5期434-437,共4页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
关键词 入侵检测 支持向量机 决策树 多类分类 intrusion detection support vector machine decision tree multi-class classification
  • 相关文献

参考文献11

  • 1Sung A H, Mukkamala S. Identifying important features for intrusion detection using support vector machines and neural networks [ J ]. Applications and the Internet Technology,2003,14(4) : 209-216.
  • 2饶鲜,董春曦,杨绍全.基于支持向量机的入侵检测系统[J].软件学报,2003,14(4):798-803. 被引量:135
  • 3李永忠,赵博,杨鸽,徐静.贝叶斯树算法在异常入侵检测中的应用[J].江苏科技大学学报(自然科学版),2008,22(1):52-56. 被引量:4
  • 4Scholkopf B. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, (13) : 1443 - 1471.
  • 5Reilly M, Stillman M. Open infrastructure for scalable intrusion detection [ C ]//Information Technology Conference. [ S. l. ] :IEEE,1998 : 129 - 133.
  • 6CristianiniN Shawe-TaylorJ 李国正译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 7Lee J S, Oh Ⅱ Seok. Binary classification trees for multi- class classification prooblems [ M ]. [ S. 1. ]: IEEE, 2003: 770 - 774.
  • 8陈敏雅 石蕾.基于SVM多分类决策树的研究综述.电脑知识与技术,2008,1(8):1427-1429.
  • 9韩家新,何华灿.SVMDT分类器及其在文本分类中的应用研究[J].计算机应用研究,2004,21(1):23-24. 被引量:15
  • 10Lee R D. The Lee-Carter method for forecasting mortality with various extansions and applications [ J ]. North American Actuarial Journal,2000,4 ( 1 ) : 80 - 91.

二级参考文献23

共引文献261

同被引文献6

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部