期刊文献+

一维奇型Dirac算式自伴域的刻画

Self-adjoint domain of one-dimensional singular dirac operator
下载PDF
导出
摘要 Dirac方程是量子力学的基本方程,讨论Dirac算式的自伴域在数学物理中有广泛的应用,文中根据Dirac算式的最大定义域、最小定义域和Dirac算式在区间[0,b]上的自伴域的结果,利用自伴延拓的Calkin描述通过对b取极限的讨论推导出Dirac算式在区间[0,+∞)上的自伴域D(T(L))={f∈D(L)|f1(0)cosα+f2(0)sinα},并证明了当势函数q1(x),q2(x)为区间[0,+∞)上的实值连续函数,则L必是极限点. Dirac equation is one of the fundamental equations of quantum mechanics, and discussion of self-adjoint domains is very important in mathematics and physics. By using maximum and minimum independent variable of Dirac operator and the conclusions of regular Dirae operator's self-adjoint domains in [0 ,b], one dimensional singular Dirac operator's self-adjoint domains D(T(L) ) = {f∈ D(L)|f1 (0)cos α +f2 (0)sin α }in [0, +∞ ) were described. It was concluded that singular dirac operator L was limit-point when the potential was continuous.
作者 王平心
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2009年第5期460-463,共4页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 江苏省高校自然科学基金资助项目(07KJD110048)
关键词 奇型Dirac算式 自伴延拓 极限点 singular Dirac operator self-adjoint extension limit-point
  • 相关文献

参考文献8

二级参考文献13

  • 1李翊神.Гелъфанл-Левитан恒等式的一种推广[J].北京大学学报,1963,9(2):133-138.
  • 2[1]LEVTIAN B M,SARGSJAN I S.Sturm-Liouville and Dirac Operators[M].Soviet Union:Kluwer Academic Publishers,1991.
  • 3[2]REED M,SIMON B.Metheds of modern Mathematical Physics[M].北京:世界图书出版公司北京公司,2003.
  • 4[3]EVERITT W N,MARKAS L.Complex sympletic geometry with applications to ordinary differential operators[J].Transactions of The American Mathematical Society,1999,351 (12):4905-4945.
  • 5[4]GOLDBERG S.Unbound Linear Operators (Theory and Applications)[M].New York:McGraw-Hill,1966.
  • 6[5]WEIDMANN J.Linear Operators in Hilbert Space[M].Berlin:Springer-Verlag,1980.
  • 7曹之江.常微分算子[M].北京:科学出版社,1985..
  • 8Levtian B M,Sargsjan I S.Sturm-Liouville and Dirac operators[M].Kluwer Academic Publishers,1991.
  • 9Goldberg S.Unbound linear operators (theory and applications)[M].New York:McGraw-Hill,1966.
  • 10Reed M,Simon B.Metheds of modern Mathematical Physics(Ⅰ,Ⅱ)[M].Academic Press,1975.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部