摘要
Dirac方程是量子力学的基本方程,讨论Dirac算式的自伴域在数学物理中有广泛的应用,文中根据Dirac算式的最大定义域、最小定义域和Dirac算式在区间[0,b]上的自伴域的结果,利用自伴延拓的Calkin描述通过对b取极限的讨论推导出Dirac算式在区间[0,+∞)上的自伴域D(T(L))={f∈D(L)|f1(0)cosα+f2(0)sinα},并证明了当势函数q1(x),q2(x)为区间[0,+∞)上的实值连续函数,则L必是极限点.
Dirac equation is one of the fundamental equations of quantum mechanics, and discussion of self-adjoint domains is very important in mathematics and physics. By using maximum and minimum independent variable of Dirac operator and the conclusions of regular Dirae operator's self-adjoint domains in [0 ,b], one dimensional singular Dirac operator's self-adjoint domains D(T(L) ) = {f∈ D(L)|f1 (0)cos α +f2 (0)sin α }in [0, +∞ ) were described. It was concluded that singular dirac operator L was limit-point when the potential was continuous.
出处
《江苏科技大学学报(自然科学版)》
CAS
北大核心
2009年第5期460-463,共4页
Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金
江苏省高校自然科学基金资助项目(07KJD110048)
关键词
奇型Dirac算式
自伴延拓
极限点
singular Dirac operator
self-adjoint extension
limit-point