期刊文献+

基于作战效能的无人机航路规划研究 被引量:3

Combat Effectiveness Based Path Planning for Unmanned Air Vehicles
下载PDF
导出
摘要 综合考虑目标分配与航路规划全过程,提出一种基于作战效能的无人机航路规划方法。在航路规划层利用变长染色体遗传算法规划无人机的初始航路,在协同规划层则以作战效能为指标,运用遗传粒子群优化算法进行任务优化分配,最终得到一个备选航路集。然后,利用协同算法可在备选航路集中找到满足要求的任务航路。该方法不仅能够规划出单机或多机协同全局航路,而且还可根据威胁环境或目标变化适时修正航路,并始终保证较高攻击效能。 Considering both the target allocation and the whole path planning process, a path planning scheme for Unmanned Air Vehicles (UAV) is put forward based on combat effectiveness. In path planning layer, variable-length chromosomes genetic algorithm is used to choose the initial path. In cooperative planning layer, the combat effectiveness is taken as the index and genetic particle swarm optimization algorithm is used in task allocation for obtaining an optional path set. Then, cooperative algorithm is used in the path set for finding the path satisfying all the requirements. Results of simulation demonstrate that this method can be used for single aircraft and multi-aircraft path planning, and can modify the path according to the changing of the threat and target while keeping high attacking efficiency.
出处 《电光与控制》 北大核心 2009年第11期14-18,共5页 Electronics Optics & Control
基金 航天科技创新基金资助项目(CASC0209) 总装武器装备预研基金资助项目(9140A04050407JB3201)
关键词 作战效能 目标分配 无人机 航路规划 重规划 combat effectiveness target allocation Unmanned Air Vehicle(UAV) path planning replanning
  • 相关文献

参考文献2

二级参考文献16

  • 1肖健梅,李军军,王锡淮.改进微粒群优化算法求解旅行商问题[J].计算机工程与应用,2004,40(35):50-52. 被引量:29
  • 2任斌,丰镇平.改进遗传算法与粒子群优化算法及其对比分析[J].南京师范大学学报(工程技术版),2002,2(2):14-20. 被引量:35
  • 3Shi Y,Eberhart R C.A Modified Particle Swarm Optimization[C]// Proc.IEEE International Conference on Evolutionary Computation,Anchorage,1998:69-73.
  • 4Kevin B Judd,Timothy W McLain.Spline based Path Planning for Unmanned Air Vehicles[C]// AIAA Guidance Navigation and Control Conference,Las Vegas,2001:1183-1189.
  • 5Clerc M,Kenndy J.The Particle Swarm Explosion,Stability,and Convergence in a Multidimensional Complex Space[J].IEEE Trans.On Evolutionary Computation (S0058-6021),2002,6(1):58-62.
  • 6KENNEDY J, EBERHART R C. Particle swarm optimization[ C ]//IEEE International Conference on Neutral Networks,(Perth, Australia). IEEE Service Center, Piseataway, N J,1995 : 1942 - 1948.
  • 7SHI Y, EBERHART R C. A modified particle swarm optimization[ C]//IEEE International Conference on Evolutionary Computation, Anchorage, 1998:69 - 73.
  • 8CLERC M, KENNDY J. The particle swarm explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Trans. On Evolutionary Computation, 2002,6 ( 1 ) :58 - 73.
  • 9SHI Y H, EBERHART R C. Parameter selection in particle swarm optimization [ C ]//Evolutionary :Programming Ⅶ,Lecture Notes in Computer Science 1447, Springer, 1998 :591 - 600.
  • 10张海,周德云,佟明安.对地攻击的路线规划方法[J].电光与控制,1999,6(1):37-42. 被引量:23

共引文献35

同被引文献17

  • 1左益宏,柳长安,李挺.基于目标分配的无人机航路规划[J].飞行力学,2005,23(1):93-96. 被引量:9
  • 2刘小雄,章卫国,李广文,李爱军.无人机自主编队飞行控制的技术问题[J].电光与控制,2006,13(6):28-31. 被引量:29
  • 3杨遵.无人作战飞机自主控制体系结构与航路规划研究[D].西安:空军工程大学.2007.
  • 4曹璐.UCAV侦察/打击一体化自主控制关键技术研究[D].西安:西北工业大学,2011.
  • 5美军计划在2019年之前将基于无人机的战斗空中巡逻圈数量增加百分之五十[N].每防务快讯,2015-08-21.
  • 6美导弹防御局研发激光无人机项目[N].每防务快讯,2015-08-24.
  • 7美海军计划在9月份对"特里同"无人机展开作战评估试验[N].每防务快讯,2015-08-26.
  • 8俄罗斯正在开发的新型无人机可捕杀F-35战机[N].每防务快讯,2015-09-01.
  • 9DARPA研发“小精灵”无人机用于分布式空中作战[J].每防务快讯,2015-09-02.
  • 10无人机蜂群作战将成为未来军事作战的新趋势[N].每防务快讯,2015-09-28.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部