期刊文献+

A Parallel Line Segment Intersection Strategy Based on Uniform Grids

A Parallel Line Segment Intersection Strategy Based on Uniform Grids
原文传递
导出
摘要 The line segment intersection problem is one of the basic problems in computational geometry and has been widely used in spatial analysis in Geographic Information Systems (GIS). Lots of traditional algorithms study the problem in a serial environment. However, in GIS, a spatial object is much more complicated and is considered to be always composed of multiple line segments, and one line segment connects another line segment at its endpoint. On the other hand, along with the advances made in computer hardware, more and more personal computers have multiple cores or CPUs equipped. Thus, to make full use of the increasing computing resources, parallel technique is applied as one of the most available methods. Apparently, the traditional algorithms should be improved to take advantage of the technologies. Under these circumstances, based on the modified uniform grid algorithm, which is adapted to dealing with spatial objects in GIS, this paper proposes a parallel strategy in a shared memory architecture. Also, experimental results are given in the final part of this paper to demonstrate the efficiency this strategy brings. 线片断交叉问题是在计算几何学的基本问题之一并且广泛地在地理信息系统(GIS ) 在空间分析被使用了。大量传统的算法在连续环境学习这个问题。在 GIS,然而,一个空间目标是更复杂的并且被认为总是由线片断连接的多重线片断,和片断组成在它的端点的另一个线片断。与在计算机硬件献殷勤的一起,在另一方面,越来越多的个人计算机把多重核心或中央处理器装备。因此,充分利用增加的计算资源,平行技术作为最可得到的方法之一被使用。显然,传统的算法应该被改进利用技术。在这些情形下面,基于修改一致格子算法,它被使适应在 GIS 处理空间目标,这篇论文在分享的存储器体系结构建议平行策略。另外,试验性的结果在这篇论文的最后的部分被给表明这策略带的效率。
出处 《Geo-Spatial Information Science》 2009年第4期257-264,共8页 地球空间信息科学学报(英文)
关键词 line-segment intersection parallel computing GIS 线段相交 均匀网格 地理信息系统 网格算法 平行 空间分析 并行技术 计算机硬件
  • 相关文献

参考文献8

  • 1Franklin Wm R, Chandrasekhar N,Kankanhaili M, et al. (1988) Efficiency of uniform grids for intersection detection on serial and parallel machines[C]. Proceedings of CG International, Geneva, Switzerland.
  • 2Wang Fangju (1993) A parallel intersection algorithm for vector polygon overlay [J]. IEEE Computer Graphics and Applications, 13(2): 74-81.
  • 3Michael Shamos, Dan Hoey (1976) Geometric intersection problems [C]. The 17th Ann. Conf. Found. Comp, New York, USA.
  • 4Bentley J, Ottmann T (1979) Algorithms for reporting and counting geometric intersection [J]. IEEE Trans. Computers C28:643-647.
  • 5Bernard Chazelle, Herbert Edelsbrunner (1992) An optimal algorithm for intersecting line segments in the plane [J]. Journal of the A CM, 39(1 ): 1-54.
  • 6Mulmuley K (1988) A fast planar partition algorithm [C]. Proceedings of the 29th Annual IEEE Symposium Foundations of Computer Science, Washington, DC, USA.
  • 7Clarkson K L, Shor P W (1989) Applications of random sampling in computational geometry [J]. II. Discrete and Computatzonal Geometry, 4(5): 387-421.
  • 8Ding Yuemin, Densham Paul J (1996) Spatial strategies for parallel spatial modeling [J]. Geographical Information Systems, 10(6): 669-698.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部