期刊文献+

平面上的Clifford系列定理 被引量:1

The Clifford Chain Theorem on the Plane
下载PDF
导出
摘要 Clifford定理的证明难度较大,尤其用初等几何学的方法来证明难度更大,至今没有发现一个较完整的用初等几何学的方法证明这一定理。文章利用实交比值引理给出了当n=4,5时的Clifford定理的证明。 This paper is a part of the author's master thesis at Oslo University. It is going to proof Clifford chain theorem for 4,5 general lines in the plane by using the real cross ratio lemma.
作者 拉巴次仁
机构地区 西藏大学理学院
出处 《西藏大学学报(社会科学版)》 2009年第5期114-115,共2页 Journal of Tibet University
关键词 Clifford系列定理 Clifford定理证明 实交比值引理 一般直线 Clifford Chain Theorem Proof of Clifford Theorem Real Cross Ratio Lemma general lines.
  • 相关文献

参考文献10

  • 1W.K.Clifford.Synthetic Proof of Miquel‘s Theorem[].Math-ematical Papers.1882
  • 2Lian-shin Hahn.Complex Numbers&Geometry[]..1994
  • 3Roger Fenn.Geometry[]..2003
  • 4J.W.CLAWSON.Ursinus College,A Chain of Circles As-sociated With The 5-Line[].American Journal of Mathematics.
  • 5M.Berger.Geometry1,2[]..1987
  • 6Hongbo Li,Ronghua Xu,Ningzhang.On Miquel’sFive-Circle Theorem[].Computer Algebra and Geometric Algebra with Applications.
  • 7Herbert W.Richmond.On a Chain of Theorems due toHomersham Cox[]..1941
  • 8H.W.Richmond.A hain of Theorems For Lines In Space[]..1941
  • 9H.W.Richmond.ANoteonthe"Morley-Pesci-deLongchamps"Chain of Theorems[]..1939
  • 10W.B.Carver.The failure of the Clifford chain[].American Journal of Mathematics.1920

同被引文献20

  • 1W.K. Clifford, Synthetic Proof of Miquel's Theorem[J]. Mathematical Papers, 1882: 38-54.
  • 2Lian-shin Hahn, Complex Numbers & Geometry[M]. The Mathematical Association of America, 1994.
  • 3Roger Fenn, Geometry[M]. Springer: (2003).
  • 4J. W. CLAWSON,A Chain of Circles Associated With The 5-Line[J].American Mathematical Monthly(Vol. 61, No.3).
  • 5Walter B, Carver, The Failure of the Clifford Chain[J].American Journal of Mathematics, 1920 (Vol. 42, No.3.).
  • 6M. Berger, Geometry1,2[M]. Springer,1987.
  • 7Hongbo Li, Ronghua Xu and Ningzhang, On Miquel's Five-Circle Theorem [J/OL]. http://www.springerlink.com/content/yfada6m2jw8ur3ul/fulltext.pdf.2003.
  • 8Herbert W. Richmond, On a Chain of Theorems due to Homersharn Cox[J]. London Math. Soc., 1941 (s1-16).
  • 9H. W. Richmond, A Chain of Theorems For Lines In Space[J]. London Math. Soc., 1941 (s1-16).
  • 10H. W. Richmond, A Note on the "Morley-Pesci-de Longchamps" Chain of Theorems [J]. London Math. Soc,1939 (s1-14).

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部