期刊文献+

遗传算法中自适应方法的比较和分析 被引量:6

Comparison and analysis of adaptive genetic algorithms
下载PDF
导出
摘要 分析了前人提出的具有代表性的自适应遗传算法,使用23个测试函数对SGA和3种AGA进行实验比较,讨论并总结出各种AGA的优劣所在,为新研究理念的提出提供基础,也为工业应用提供一个参考标准。实验结果表明,基于聚类分析的AGA在算法性能上较其它自适应遗传算法更优,具有很高的实用价值和发展前景。 The representative adaptive genetic algorithms are analyzed. The performance ofthe SGA and three types ofAGA is compared by testing 23 benchmark functions. The characteristics of the AGA are discussed and concluded, in order to provide reference basis for theoretical research and industrial applications. The result of experiment shows that the clustering-based AGA outperforms the other adaptive genetic algorithms, indicating its great potential in practice and the bright future.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第21期4907-4913,共7页 Computer Engineering and Design
基金 国家自然科学基金项目(60573066) 广东省自然科学基金项目(5003346) 教育部留学回国人员科研启动基金项目(教外司留[2006]331号)
关键词 遗传算法 自适应参数 交叉 变异 聚类分析 genetic algorithms adaptive parameters crossover mutation clustering analysis
  • 相关文献

参考文献10

  • 1Dai C H,Zhu Y F,Chen W R.Adaptive probabilities of crossover and mutation in genetic algorithms based on cloud model[].Proceedings of IEEE Information Theory Workshop.2006
  • 2Fourie C J,Perold W J.Comparison of genetic algorithms to other optimization techniques for raising circuit yield in superconduc-ting digital circuits[].IEEE Transactions on Applied Supercon-ductivity.2003
  • 3Yao X,Liu Y,Lin G.Evolutionary programming made faster[].IEEE Transactions on Evolutionary Computation.1999
  • 4Srinivas M,Patnaik L M.Adaptive probabilities of crossover and mutation in genetic algorithms[].IEEE Transactions on Systems Man and Cybernetics.1994
  • 5BoeringerD W,W ernerD H,M achugaD W.A Sim ul-taneous Parameter Adaptation Schem e for G enetic Algo-rithms w ith Application to Phased Array Synthesis[].IEEE Transactions on Antennas and Propagation.2005
  • 6Zhou Xiaoyao,Cheng Haozhong.The induction motor parameter estimation through an adaptive genetic algorithm[]..2004
  • 7Abbas H M,Bayoumi M M.Volterra-system Identification Using Adaptive Real-coded Genetic Algorithm[].IEEETrans on SystemsMan and Cybernetics.2006
  • 8Zhang J,Chung Henry SH,Lo WL.Clustering-Based adaptive crossover and mutation probabilities for genetic algorithms[].IEEE Transon Evolutionary Computation.2007
  • 9D. W. Boeringer,D. H. Werner.“Particle swarm optimization versus genetic algorithms for phased array synthesis,”[].IEEE Transactions on Antennas and Propagation.2004
  • 10DILETTOSO E,SALERNO N.A self-adaptive niching genetic algorithm for multimodal optimization of electromagnetic de- vices[].IEEE Transactions on Magnetics.2006

同被引文献55

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部