期刊文献+

无需人工标记的视频对比度道路能见度检测 被引量:22

Visibility Detection Based on Traffic Video Contrast Analysis without Artificial Markers
下载PDF
导出
摘要 为了解决传统的能见度仪价格昂贵、采样有限,及已有的一些视频测量手段需人工标记物、稳定性差等不足,提出基于路况视频对比度的能见度检测算法,进而构建无需人工标记的能见度检测系统.通过分析车道分割线,提取兴趣域,以确保所选像素的高度一致;解析各像素相对于其四邻的对比度,所取的最大值若大于给定阈值即为人眼可分辨像素;结合摄像机标定来计算距摄像机最远的可视像素,并通过Kalman滤波器滤除干扰,得到能见度值.该系统充分利用已有的路况图像,稳定性高、成本低、检测精度高,具有广阔的应用前景. Due to the fact that traditional visibility meter was expensive in addition to the limited sampling region, and the existing video measurement methods need artificial markers while the stability of output was poor, a visibility detection algorithm based on traffic video contrast analysis was brought forward, and then a visibility detection system without artificial markers was further developed. First, the region of interest was figured out by detecting the lane boundaries to ensure the height constancy of the selected pixels. Then the contrast values of each pixel to its 4-neighbors were analyzed, and the pixel whose maximum contrast value exceeds the preset threshold was considered as the distinguishable one by human operator. Finally, combined with camera calibration technology, the maximum distinguishable pixel to the camera was selected, and the distance value was further smoothed by Kalman filter, and the outcome was regarded as the current visibility distance. By making full use of existing traffic videos, with good stability, low-cost, high accuracy, this system has broad application prospects.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第11期1575-1582,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 中国交通部科技攻关项目(200435333204) 江苏省交通科学研究项目(05x008)
关键词 能见度 视频监控 像素对比度 兴趣域检测 摄像机标定 calibration visibility video surveillance pixel contrast region of interest detection camera
  • 相关文献

参考文献5

二级参考文献33

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2王泽兵,杨朝晖.彩色图像分割技术研究[J].电视技术,2005,29(4):20-24. 被引量:20
  • 3黄丹丹,孙咏,任俊,李志能.利用图像识别的车速测量系统[J].计算机辅助设计与图形学学报,2005,17(6):1258-1262. 被引量:12
  • 4[1]Yuan Xiaojing,Sun Zehang,Yaakov Varol,and George Bebis.A Distributed Visual Surveillance System[C].in IEEE Conference on Advanced Video and Signal Based Surveillance,2003.
  • 5[2]K.Shunsuke.Classification of traffic events based on the spatio-temporal MRF model and the bayesian network[C].9th World Congress on ITS,Chicago,Oct.2002.
  • 6[3]Yu Bin,A.K.Jain.Lane boundary detection using a multiresolution hough transform[C].1997 International Conference on Image Processing (ICIP ' 97) 3-Volume Set-Volume 2 p.748,1997 Washington,DC.
  • 7[4]M.Bertozzi,A.Broggi,GOLD:A parallel real-time stereo vision system for generic obstacle and lane detection[J].IEEE Trans.Image Processing,1998,7:62-81.
  • 8Chausse F, Aufrere R, Chapuis R. Recovering the 3-D shape of a road by on-board monocular vision [C] //Proceedings of the 15th International Conference on Pattern Recognition,Barcelona, 2000, 1:325-328
  • 9Sawhney H S, Ayer S. Compact representation of videos through dominant multiple motion estimation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence archive, 1996, 18(8): 814-830
  • 10Dailey D J, Cathey F W, Pumrin S. An algorithm to estimate mean traffic speed using uncalibrated cameras [J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(2): 98-107

共引文献81

同被引文献214

引证文献22

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部