期刊文献+

无监督的差分鉴别特征提取以及在人脸识别上的应用 被引量:7

Unsupervised Difference Discriminant Feature Extraction—with Application to Face Recognition
下载PDF
导出
摘要 局部保持投影(LPP)只考虑了投影后的局部性,而忽视了非局部性.针对这个问题,引入非局部散布矩阵,提出无监督的差分鉴别特征提取算法,通过最大化非局部和局部之间的散度差来寻找最优变换矩阵,并将其成功地应用于人脸识别.该算法同时引入非局部和局部的信息,揭示隐含在高维图像空间中的非线性结构;采用差分的形式求解最优变换矩阵,以避免"小样本"问题;对LPP中的邻接矩阵进行了修正,以更准确地描述样本之间的邻近关系.在Yale和AR标准人脸库上的实验结果验证了文中算法的有效性. Locality preserving projections (LPP) only concerns the projected locality property while ignores that of "nonlocality". To tackle this problem, a novel unsupervised method of difference discriminant feature extraction is presented. This method extracts an optimal transformation matrix based on maximal nonlocal and local scatter difference, and is successfully applied to face recognition. The proposed method takes into account both the nonlocal and local information to account for the nonlinear structures hidden in the high-dimensional image space. In this method, the "small size sample" problem is avoided by employment of difference operation and the neighborhood relationship is better described by an adequate modification of the adjacency matrix. Extensive experiments on Yale and AR face database demonstrate the effectiveness of the proposed method.
作者 严慧 杨静宇
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第11期1632-1637,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金重点项目(60632050) 国家自然科学基金(606472060 60473039) 国家"八六三"高技术研究发展计划(2006AA01Z119)
关键词 局部保持投影 局部散度 非局部散度 散度差 人脸识别 locality preserving projection local scatter nonlocal scatter scatter difference face recognition
  • 相关文献

参考文献3

二级参考文献76

  • 1宋枫溪,程科,杨静宇,刘树海.最大散度差和大间距线性投影与支持向量机[J].自动化学报,2004,30(6):890-896. 被引量:58
  • 2Hjelmas E, Low B K. Face detection: A survey. Journal of Computer Vision and Image Understanding, 2001, 83(3) : 236-274.
  • 3Yang M H, Ahuja N, Kriegman D. Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1): 34-58.
  • 4Toyama K. Prolegomena for robust face tracking. MSR- Tech-Report-98-65, Microsoft, 1998.
  • 5Samal A, lyengar P. Automatic recognition and analysis of human faces and facial expressions: A survey. Pattern recognition, 1992, 25(1) : 65--77.
  • 6Zhao W, Chellappa R, Rosenfeld A, Phillips P J. Face recognition- A literature survey. CS-Tech Report-4167, University of Maryland, 2000.
  • 7Zhou J, Lu C Y, Zhang C S, Li Y D. A survey of face recognition. Acta Electronica Sinica, 2000, 28(4) : 102--106(in Chinese).
  • 8Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces: A survey. Proceedings of the IEEE,1995, 83(5): 705--740.
  • 9Bledsoe W. Man-machine facial recognition. Tech Report PRI-22, Panoramic Research Inc., Palo Alto, CA, 1966.
  • 10Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs Fisherfaee: Recognition using class special linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711-720.

共引文献178

同被引文献83

  • 1He X F,Yan S C,Hu Y,et al.Face recognition using Lap-lacianfaces[J].IEEE Transactions on Pattern Analysisand Machine Intelligence,2005,27(3):328-340.
  • 2Yang J,David Z,Yang J Y,et al.Globally maximizing,lo-cally minimizing:unsupervised discriminant projectionwith applications to face and palm biometrics[J].IEEETransactions on Pattern Analysis and Machine Intelli-gence,2007,29(4):650-664.
  • 3Xu Y,Zhong A N,Yang J,et al.LPP solution schemes foruse with face recognition[J].Pattern Recognition,2010,43(12):4165-4176.
  • 4Lu G F,Lin Z,Jin Z.Face recognition using discriminantlocality preserving projections based on maximum margincriterion[J].Pattern Recognition 2010,43(3):3572-3579.
  • 5Cai D,He X F,Han J W.Orthogonal laplacianfaces forface recognition[J].IEEE Transactions on ImageProcess,2006,15(11):3608-3614.
  • 6Zhu L,Zhu S N.Face recognition based on orthogonaldiscriminant locality preserving projections[J].Neuro-computing,2007,70(9):1543-1546.
  • 7Hu H F.Orthogonal neighborhood preserving discriminantanalysis for face recognition[J].Pattern Recognition,2008,41(6):2045-2054.
  • 8Song F X,Yang J Y.Orthogonalized Fisher discriminant[J].Pattern Recognition,2005,38(5):311-313.
  • 9Tao Y T,Yang J.Quotient vs.difference:comparison be-tween the two discriminant criteria[J].Neurocomputing,2010,73(10-12):1808-1817.
  • 10Turk M, Pentland A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部