摘要
Profenofos, a well known organophosphate pesticide, has been in agricultural use over the last two decades for controlling Lepidopteron pests of cotton and tobacco crops. In this study, a bacterial strain, OW, was isolated from a long term profenofos exposed soil by an enrichment technique, and its ability to degrade profenofos was determined using gas chromatography. The isolated strain OW was identified as Pseudomonas aeruginosa according to its physiological and biochemical properties, and the analysis of its 16S rRNA gene sequence. The strain grew well at pH 5.5-7.2 with a broad temperature profile. Bioremediation of profenofos-contaminated soil was examined using soil treated with 200 μg/g profenofos, which resulted in a higher degradation rate than control soils without inoculation. In a mineral salt medium (FTW), removal in the level of profenofos of 86.81% was obtained within 48 h of incubation. The intermediates of profenofos metabolism indicated that the degradation occurred through a hydrolysis mechanism, and one of the metabolites was found to be 4 bromo-2-cholorophenol (BCP) which in turn was also mineralized by the strain. The results of this study highlighted the potentiality of P. aeruginosa as a biodegrader which could be used for the bioremediation of profenofos contaminated soil.
Profenofos, a well known organophosphate pesticide, has been in agricultural use over the last two decades for controlling Lepidopteron pests of cotton and tobacco crops. In this study, a bacterial strain, OW, was isolated from a long term profenofos exposed soil by an enrichment technique, and its ability to degrade profenofos was determined using gas chromatography. The isolated strain OW was identified as Pseudomonas aeruginosa according to its physiological and biochemical properties, and the analysis of its 16S rRNA gene sequence. The strain grew well at pH 5.5-7.2 with a broad temperature profile. Bioremediation of profenofos-contaminated soil was examined using soil treated with 200 μg/g profenofos, which resulted in a higher degradation rate than control soils without inoculation. In a mineral salt medium (FTW), removal in the level of profenofos of 86.81% was obtained within 48 h of incubation. The intermediates of profenofos metabolism indicated that the degradation occurred through a hydrolysis mechanism, and one of the metabolites was found to be 4 bromo-2-cholorophenol (BCP) which in turn was also mineralized by the strain. The results of this study highlighted the potentiality of P. aeruginosa as a biodegrader which could be used for the bioremediation of profenofos contaminated soil.
基金
supported by the National Key Technology Research and Development Program of China (No.2008BADA7B03)
the City Key Technology R & D Program of Wuhan in China (No. 200720422150)