期刊文献+

Forward-backward Stochastic Differential Equations and Backward Linear Quadratic Stochastic Optimal Control Problem 被引量:1

Forward-backward Stochastic Differential Equations and Backward Linear Quadratic Stochastic Optimal Control Problem
下载PDF
导出
摘要 In this paper, we use the solutions of forward-backward stochastic differential equations to get the optimal control for backward stochastic linear quadratic optimal control problem. And we also give the linear feedback regulator for the optimal control problem by using the solutions of a group of Riccati equations. In this paper, we use the solutions of forward-backward stochastic differential equations to get the optimal control for backward stochastic linear quadratic optimal control problem. And we also give the linear feedback regulator for the optimal control problem by using the solutions of a group of Riccati equations.
作者 ZHANG DE-TAO
机构地区 School of Mathematics
出处 《Communications in Mathematical Research》 CSCD 2009年第5期402-410,共9页 数学研究通讯(英文版)
基金 The NSF(10671112)of China National Basic Research Program(973 Program)(2007CB814904)of China the NSF(Z2006A01)of Shandong Province and the Chinese New Century Young Teachers Program
关键词 backward stochastic differential equations optimal control Riccati equation backward stochastic differential equations, optimal control, Riccati equation
  • 相关文献

参考文献12

  • 1WUZhen.FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS, LINEAR QUADRATIC STOCHASTIC OPTIMAL CONTROL AND NONZERO SUM DIFFERENTIAL GAMES[J].Journal of Systems Science & Complexity,2005,18(2):179-192. 被引量:13
  • 2Jiongmin Yong.Finding adapted solutions of forward–backward stochastic differential equations: method of continuation[J].Probability Theory and Related Fields.1997(4)
  • 3Y. Hu,S. Peng.Solution of forward-backward stochastic differential equations[J].Probability Theory and Related Fields.1995(2)
  • 4Jin Ma,Philip Protter,Jiongmin Yong.Solving forward-backward stochastic differential equations explicitly — a four step scheme[J].Probability Theory and Related Fields.1994(3)
  • 5.
  • 6Antonelli F.Backward-forward stochastic differential equations[].The Annals of Applied Probability.1993
  • 7Peng S,WU Z.Fully coupled forward-backward stochastic differential equations and applications to optimal control[].The SIAM Journal on Control and Optimization.1999
  • 8Peng S.Probabilistic interpretation for systems of quasi-linear parabolic partial differential equations[].Stochastics and Dynamics.1991
  • 9WU Z.The comparison theorem of FBSDE[].Statistics and Probability Letters.1999
  • 10Wonham,W M.On the separation theorem of stochastic control[].The SIAM Journal on Control and Optimization.1968

二级参考文献14

  • 1Y. Hu, and S. Peng, Solution of forward-backward stochastic differential equations, Proba. Theory and Related Fields, 1995, 103: 273-283.
  • 2S. Peng and Z. Wu, Fully coupled forward-backward stochastic differential equations and applications to optimal control, SIAM J. Control Optim., 1999, 37: 825-843.
  • 3J. Yong, Finding adapted solution of forward backward stochastic differential equations-method of continuation, Proba Theory and Related Fields, 1997, 107: 537-572.
  • 4W. M. Wonham, On the separation theorem of stochastic control, SIAM J. Control Optim., 1968,6: 312-326.
  • 5J. M. Bismut, Controle des systemes lineaires quadratiques: applications de l'integrale stochastique, Lecture Notes in Mathematics, vol.649, Seminaire de Probabilites XII, Proceedings, Strasbourg, 1976-1977, Edite par C. Dellacherie, P. A. Meyer et M. Weil, Springer-Verlag, 1978, 180-264.
  • 6S. Chen, X. Li and X. Zhou, Stochastic linear quadratic regulators with indefinite control weight costs, SIAM J. Control Optim. 1998, 36: 1685-1702.
  • 7S. Peng, Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions,Stochastic Processes and Their Applications, 2000, 88: 259-290.
  • 8A. Friedman, Differential Games, Wiley-Interscience, New York, 1971.
  • 9A. Bensoussan, Point de Nash dans de cas de fonctionnelles quadratiques et jeux differentiels a Npersonnes, SIAM J. Control, 1974, 12(3).
  • 10T. Eisele, Nonexistence and nonuniqueness of open-loop equilibria in linear-quadratic differential games, J. Math. Anal. Appl., 1982, 37: 443-468.

共引文献12

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部