期刊文献+

Difference Equation for N-body Type Problem

Difference Equation for N-body Type Problem
下载PDF
导出
摘要 In this paper, the difference equation for N-body type problem is established, which can be used to find the generalized solutions by computing the critical points numerically. And its validity is testified by an example from Newtonian Threebody problem with unequal masses. In this paper, the difference equation for N-body type problem is established, which can be used to find the generalized solutions by computing the critical points numerically. And its validity is testified by an example from Newtonian Threebody problem with unequal masses.
出处 《Communications in Mathematical Research》 CSCD 2009年第5期411-417,共7页 数学研究通讯(英文版)
基金 Partially supported by the Talent Foundation(522-7901-01140418)of Northwest A&F University
关键词 Difference equation N-bodytype problem critical point Difference equation, N-bodytype problem, critical point
  • 相关文献

参考文献13

  • 1张世清,周青.Variational methods for the choreography solution to the three-body problem[J].Science China Mathematics,2002,45(5):594-597. 被引量:7
  • 2V. Barutello,S. Terracini.Double choreographical solutions for n-body type problems[J].Celestial Mechanics and Dynamical Astronomy (-).2006(1-4)
  • 3Davide L. Ferrario,Susanna Terracini.On the existence of collisionless equivariant minimizers for the classical n-body problem[J].Inventiones mathematicae.2004(2)
  • 4Shiqing Zhang,Qing Zhou.Variational methods for the choreography solution to the three- body problem[J].Science in China Series A: Mathematics.2002(5)
  • 5Chen,K.C.On Chenciner-Montgomery’s orbits in the three-body problem[].Discrete Contin DynamSystems.2001
  • 6Roberts,Gareth E.Linear stability analysis of the figure-eight orbit in the three-body problem[].Ergodic Theory DynamSystems.2007
  • 7Chenciner,A,Gerver,J,Montgomery,R,Simo′,C.Simple choreographic motions of N bodies:a preliminary study[].GeomMechDynamics.2002
  • 8Wu,Z,Li,Y.Ordinery Differential Equations[]..2004
  • 9Chenciner,A.,Montgomery,R.‘A remarkable periodic solution of the three-body problem in the case of equal masses’[].Annals of Mathematics.2000
  • 10Ferrario,D.,Terracini,S.On the existence of collisionless equivariant minimizers for the classical n-body problem[].Inventiones Mathematicae.2004

二级参考文献2

  • 1Richard S. Palais.The principle of symmetric criticality[J].Communications in Mathematical Physics.1979(1)
  • 2Gordon,W.A minimizing property of Keplerian orbits, Amer[].Journal of Mathematics.1977

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部