期刊文献+

激光烧蚀技术在电感耦合等离子体发射光谱中的应用 被引量:1

Application of Laser Ablation Technology in the Emission Spectra of Inductively Coupled Plasma
原文传递
导出
摘要 利用Nd:YAGns脉冲激光烧蚀土壤标样,由Ar载气流将蒸发物引入到电感耦合等离子体光源,通过光谱仪和采谱系统获得原子发射光谱,测量了样品中重金属元素As、Pb、Cr、Hg和Cd的光谱强度、信背比和谱线宽度,并研究了样品蒸发量和烧蚀颗粒尺寸随实验条件的变化。结果表明,当激光输出能量从100mJ上升至700mJ时,元素的光谱强度和信背比均正比增大,谱线宽度基本不变;样品蒸发量亦随激光能量正比增加,但烧蚀颗粒尺寸增大缓慢。所以,适当增大激光输出能量可以获得更高质量的原子发射光谱。 Nd: YAG nanosecond pulsed laser was used to ablate the soil standard samples. The evaporated material was intro duced to inductively coupled plasma source by the argon carrier gas flow. The atomic emission spectrum be obtained through the spectrometer and spectral collecting system. The spectral intensity, the signal-to background ratio, and the full-width at half maximum were measured, such as As,Pb,Cr,Hg,and Cd of heavy metal elements in the samples. And the changes of the evaporated samples mass and the ablated particles size with the experimental conditions were investigated. The results show that the spectral intensity and signal-to background ratio of the elements increase proportionally, the full-width at half-maximum unchanged basically. The evaporated samples also increase proportionally with the laser energy,but the ablated particles size increase slowly when the laser output energy rising from 100mJ to 700mJ. Therefore, the atomic emission spectrum with the higher quality can be obtained by increasing the laser output energy properly.
出处 《应用激光》 CSCD 北大核心 2009年第5期439-442,共4页 Applied Laser
基金 河北省自然科学基金资助项目(项目编号:A2008000560)
关键词 激光烧蚀 电感耦合等离子体 原子发射光谱 土壤 laser ablation inductively coupled plasma atomic emission spectrum soil
  • 相关文献

参考文献9

  • 1J. Mikolás,P. Musil,V. Stuchliková,K. Novotny,V. Otruba,V. Kanicky.[J].Analytical and Bioanalytical Chemistry.2002(2)
  • 2J Mikolas,P Musil,V Stuchlikova,et al.Infrared laser ablation study of pressed soil pellets with inductively coupled plasma atomic emission spectrometry[].Analytical and Bioanalytical Chemistry.2002
  • 3P Musil,V Otruba,V Kanicky,et al.Determination of elements in agricultural soils using IR laser ablation inductively coupled plasma atomic emission spectrometry[].Spectrochimica Acta.2000
  • 4M Ohata,N Furuta.Laser defocusing effects on laser ablation inductively coupled plasma-atomic emission spectrometry: different ablation interactions between the laser and low-alloy steel,Fe pellets,and a pond sediment pellet[].Analytical Sciece.2004
  • 5O. V. Borisov,X. L. Mao,A. C. Ciocan and R. E. Russo.Time-resolved parametric studies of laser ablation using inductively coupled plasma atomic emission spectroscopy[].Applied Surface Science.1998
  • 6Mao X L,Borisou O V,Russo R E.Enhancements in laser ablation inductively coupled plasma-atomic emis- sion spectrometry based on laser properties and ambi- ent environment[].Spectrochimica Acta.1998
  • 7Motelica-Heino M,Donard O F X,Mermet J M.Laser ablation of synthetic geological powders using ICP-AES detection: effects of the matrix, chemical form of the analyte and laser wavelength[].Journal of Analytical Science.1999
  • 8Masaki Ohata,Yoshihiro Iwasaki,Naoki Furuta,et al.Studies on Laser Defocusing Effects on Laser Ablation Inductively Coupled Plasma-atomic Emission Spectrometry Using Emission Signals from a Laser-induced Plasma[].Spectrochimica Acta.2002
  • 9Yi-Ling Lee,Chao-Chiang Chang.Laser ablation in-ductively coupled plasma mass spectrometry for the deter-mination of trace elements in soil[].Spectrochimica Actapart B:Atomic Spectroscopy.2003

同被引文献9

  • 1SALLE B, GOBERT O, MEYNADIER P, et al.Femtosecond and picosecond laser microablation: ablation efficiency and laser microplasma expansion[J].Applied Physics A Materials Science & Processing , 1999(69): S381–S383.
  • 2BALCAEN L L, LENAERTS J, MOENS L, et al.Application of laser ablation inductively coupled plasma(dynamic reaction cell) mass spectrometry for depth profiling analysis of high-tech industrial materials[J].Journal of Analytical Atomic Spectrometry, 2005(20): 417-423.
  • 3BOGAERTS A, CHEN Z Y.Effect of laser parameters on laser ablation and laser-induced plasma formation: A numerical modeling investigation [J].Spectrochimica Acta Part B, 2005(60): 1280-1307.
  • 4GONZALEZ J, MAO X L, ROY J, et al.Comparison of 193, 213 and 266 nm laser ablation ICP-MS [J].Journal of Analytical Atomic Spectrometry, 2002(17): 1108-1113.
  • 5KLUNDER G L, GRANT P M, ANDRESEN B D, et al.Direct Chemical Analysis of Solids by Laser Ablation in an Ion Storage Time-of-Flight Mass Spectrometer [J].Analytical Chemistry, 2004(76): 1249-1256.
  • 6RUSSO R E, MAO X L, LIU H, et al.Laser ablation in analytical chemistry - a review[J].Talanta, 2002(57): 425-437.
  • 7SDORRA W, KAYNIEMAX J B.Basic investigations for Laser Microanalysis: IV.The Dependence on the Laser Wavelength in Laser Ablation[J].Mikrochimica Acta, 1992(108): 1-10.
  • 8ZENG X., MAO X.L, GREIF R, et al.Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon [J].Applied Physics A Materials Science &Processing, 2005(80): 237-241.
  • 9李捷,陆继东,林兆祥,谢承利,刘林美,姚顺春,李鹏艳.激光诱导击穿固体样品中金属元素光谱的实验研究[J].中国激光,2009,36(11):2882-2887. 被引量:24

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部