期刊文献+

编队无人机的高生存力协同航路规划方法 被引量:2

High Survivability Path Planning for Unmanned Air Vehicles
下载PDF
导出
摘要 提出了一种基于多目标遗传算法的编队无人机高生存力协同航路规划方法。方法由备选航路生成和协同规划两个步骤组成。备选航路生成的目的是为编队中的每一个无人机生成多条航路,该步骤采用的算法是多目标遗传算法。协同规划的目的是为各个无人机从备选航路中选择航路,使得各个无人机同时到达目标区域,以增加任务突然性,提高整个编队的生存力。通过仿真算例,把方法与基于Voronoi图的方法作了对比,给出了方法的优缺点分析。 A high survivability coordinate path planning method based on multi-objective genetic algorithm for UAVs is proposed.The path planning consists of two step procedure.First,by using multi-objective genetic algorithm,each UAV can secure own spare paths;Second,each UAV selects a path from own spare paths;those selected paths will ensure that all the UAVs arrive at the target region simultaneously.The advantages and disadvantages of this method and Voronoi graph method are presented with a simulation example.
出处 《航空计算技术》 2009年第5期30-34,共5页 Aeronautical Computing Technique
关键词 协同航路规划 编队无人机 多目标遗传算法 VORONOI图 coordinate path planning unmanned air vehicles multi-objective genetic algorithm voronoi graph
  • 相关文献

参考文献1

二级参考文献5

  • 1[5]McLain T,Beard R. Trajectory planning for coordinated rendezvous of unmanned air vehicles.Proc.Guidance,Navigation and Control Conf.,AIAA,2000.AIAA Paper No.AIAA-2000-4369
  • 2[1]Goldman J. Path planning problems and solutions.Proc.National Aerospace and Electronics Conf.,IEEE,1994:105-108
  • 3[2]Bortoff S. Path planning for UAVs.Proc.American Control Conf.,Chicago,USA,2000:364-368
  • 4[3]Szczerba R J,Galkowski P,Glickstein I S and Ternullo N. Robust algorithm for real-time route planning.IEEE Trans.on Aerospace and Electronic System,2000,36(3):869-878
  • 5[4]Chandler P,Rasmussen S and Pachter M. UAV cooperative path planning.Proc.Guidance,Navigation and Control Conf.,AIAA,2000.AIAA Paper No.AIAA-2000-4370

共引文献19

同被引文献19

  • 1刘军祥,王永吉,Matthew Cartmell.一种改进的RM可调度性判定算法[J].软件学报,2005,16(1):89-100. 被引量:16
  • 2Tin C. Robust multi-UAV path planning in dynamic and uncer- tain environments[[D]. Massachusetts: Massachusetts Institute of Technology, 2004.
  • 3Gu D W. A UAV waypoints generator[C]//Prco, of the AIAA 1st Intelligent Systems Technical Conference ,2004.
  • 4Li M Y, Koutsopoulos L, Poovendran R. Optimal jamming attack strategies and network defense policies in wireless sensor networks[J]. IEEE Trans. on Mobile Computing, 2010,9 (8) : 1119- 1133.
  • 5Popper C, Strasser M. Anti-jamming broadcast communication using uncoordinated spread spectrum techniques[J]. IEEE Journal on Selected Areas in Communications, 2010,28(5) : 703 - 715.
  • 6Andraws S M. Optimal CAISR networks in the presence of enemy jamming[R]. Monterey: Naval Postgraduate School,2010.
  • 7Shi H S, Li D, Zhao Z G. The simulation and research of elec- tronics jamming influence on radar net detection space and flight path planning of aircraft[C]//Proc, of the International Con- ference on Radar, 2006 : 1 - 5.
  • 8Tekin E, Yener A. The general Gaussian multiple-access and two-way wiretap channels: achievable rates and cooperative jamming[J]. IEEE Trans. on Information Theory, 2008, 54(6) :2735 - 2751.
  • 9Gao X B, Wang Y, Li X L, et al. On combining morphological component analysis and concentric morphology model for mam- mography mass detection[J]. IEEE Trans. on Information Technology in Biomedicine, 2010,14 (2) : 266 - 273.
  • 10Skyu H, Hillson R. Using morphological filters for pupil detec- tion in infrared videos[R]. Washington, DC: Naval Research Lab,2010.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部