摘要
In this article, a numerical model combining conduction and radiation is developed based on two flux approximation to predict the heat transfer behavior of fibrous insulation used in thermal protection systems. Monte Carlo method is utilized to determine the modified radiative properties with experimentally measured transient external temperature as high as 1 000 K. It is found that the estimated radiative properties become time-independent after about t = 3 000 s. By comparing the predicted to the measured results in transient state, the contact resistance exerts significant influences upon the temperature distribution in the specimen. Results show that the averaged absolute deviation is 3.25% when contact resistance is neglected in heat transfer model, while 1.82% with no contact resistance.
In this article, a numerical model combining conduction and radiation is developed based on two flux approximation to predict the heat transfer behavior of fibrous insulation used in thermal protection systems. Monte Carlo method is utilized to determine the modified radiative properties with experimentally measured transient external temperature as high as 1 000 K. It is found that the estimated radiative properties become time-independent after about t = 3 000 s. By comparing the predicted to the measured results in transient state, the contact resistance exerts significant influences upon the temperature distribution in the specimen. Results show that the averaged absolute deviation is 3.25% when contact resistance is neglected in heat transfer model, while 1.82% with no contact resistance.
基金
National High-tech Research and Development Program(2006AA705317)