期刊文献+

非线性波方程尖峰孤子解的一种简便求法及其应用 被引量:8

A simple method for solving nonlinear wave equations for their peaked soliton solutions and its application
原文传递
导出
摘要 根据尖峰孤子解的特点,提出了一种待定系数法求非线性波方程尖峰孤子解的思路和方法,并利用该方法求解了5个非线性波方程,即CH(Camassa-Holm)方程、五阶KdV-like方程、广义Ostrovsky方程、组合KdV-mKdV方程和Klein-Gordon方程,比较简便地得到了这些方程的尖峰孤子解.文献中关于CH方程的结果成为本文结果的特例.通过数值模拟给出了部分解的图像.简要说明了非线性波方程存在尖峰孤子解所须满足的特定条件.该方法也适用于求其他非线性波方程的尖峰孤子解. According to the characteristics of peaked soliton solution, the undetermined coefficient method for solving nonlinear wave equations for their peaked soliton solutions is submitted and by means of the method several kinds of peaked soliton solutions are obtained for five nonlinear wave equations: the Camassa-Holm, fifth -order KdV-like, generalized Ostrovsky, combined KdV-mKdV and Klein-Gordon equations. The solutions given in literature about Camassa-Holm equation become the special cases of the solutions in this paper. The graphs of some solutions are given through numerical simulation. The special conditions under which the wave equation will have peaked soliton solution is briefly described. The method used in this paper can also be used for solving many other nonlinear equations.
作者 刘煜
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第11期7452-7457,共6页 Acta Physica Sinica
基金 河南电力试验研究院科研基金资助的课题~~
关键词 非线性波方程 尖峰孤子解 待定系数法 nonlinear wave equation peaked soliton solution undetermined coefficient method
  • 相关文献

参考文献6

二级参考文献50

  • 1张正芬 丁同仁 等.微分方程定性理论[M].北京:科学出版社,1985.51-58.
  • 2Boyd J P. Peakons and coshoidal waves: travelling wave solutions of the Camassa-Holm equation[J]. Appl Math Comput, 1997, 81(2- 3):173- 187.
  • 3QIAN Ti-fei, TANG Min-ying. Peakons and periodic cusp waves in a generalized Canmssa-Holm equation[J]. Choas, Solitons and Fraetals, 2001,12:1347 - 1360.
  • 4LIU Zheng-rong, QIAN Ti-fei. Peakons and their bifurcation in a generahzed Camassa-Holm equation[J]. International Journal of Bifurcation and Choas, 2001,11 (3) :781 - 792.
  • 5LIU Zheng-rong, QIAN Ti-fei. Peakons of the Camassa-Holm equation[J]. Applied Mathenmtical Modeling, 2002,26: 473- 480.
  • 6Constantin A, Strauss W A. Stability of the Canrmassa-Holm solitons[J] .J Nonlinear Sci, 2002, 12:415- 422.
  • 7Reyes E G. Geometric integrability of thd Camassa-Holm equation[J]. Lett Mafia Phys, 2002, 59(2): 117- 131.
  • 8Guckeenheimer J, Holmes P. Dynamical systems mid bifurcation of vector fields[M]. New York: Springer, 1983.
  • 9Camassa R, Holm D D. An integrable shallow water equation with peaked solitons[J]. Phys Rev Lett, 1993, 71 (11):1661 - 1664.
  • 10Cooper F, Shepard H. Solitons in the Camassa - Holm shallow water equation[J]. Plays Lett A, 1994, 194(4) :246 - 250.

共引文献23

同被引文献93

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部