期刊文献+

非胶结含水合物沉积物修正等效介质速度模型及其地震波场特征研究 被引量:6

Modified effective medium modeling and seismic wave field in un-cemented marine sediments with hydrates
原文传递
导出
摘要 通过数值分析,发现对应于悬浮模式、颗粒接触模式的等效介质模型A,B预测的含水合物沉积物纵波速度、横波速度及泊松比存在物理认识上的缺陷,单独考虑水合物微观模式为悬浮模式或颗粒接触模式并不合理.认为非胶结水合物的微观模式与其饱和度存在关联,并运用拉格朗日插值方法建立了新的非胶结含水合物沉积物修正等效介质速度模型.该模型体现了水合物饱和度对于水合物微观模式的影响,数值分析结果表明新模型预测结果更合理.基于新模型对非胶结含水合物沉积物的地震波场进行了数值模拟,探讨了似海底反射及空白带的形成机理,对实际水合物地震勘探中发现的不同地震波场特征对应的水合物分布模式进行了解释. Elastic-wave velocity estimation in marine sediments with hydrates is an important part of hydrate seismic survey method and engineering. Suspending model and grain contact model are two main hydrate microscopic patterns for the non-cemented sediments with hydrates. Through numerical analysis, we discovered the velocity of compression wave and transverse wave and the Poisson's ratio forecasted by suspending model and grain contact model have bugs in physical understanding. Considering the hydrate microscopic model as the suspending model or grain contact model singly is unreasonable. We point out that the hydrate microscopic model is related with the hydrate saturation and established a modified effective medium modeling of non-cemented sediments with hydrates using the Lagrange interpolation method. This model considers the effect of hydrate saturation on the hydrate microscopic model, and the numerical analysis indicated that the new model is more reasonable. We made numerical simulation of seismic wave field based on the modified effective medium model and studied the characteristics and mechanism of BSR and blanking zone, and then expounded some phenomena observed practically based on the possiblly existing models.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第11期8083-8093,共11页 Acta Physica Sinica
基金 中国地质大学(北京)地下信息探测技术与仪器教育部重点实验室开放课题项目(批准号:GDL0802) 国家自然科学基金(批准号:40776038) 海洋公益性行业科研专项经费项目(批准号:200805005) 国家海洋局海底科学重点实验室开放基金(批准号:KCSG0803)资助的课题~~
关键词 水合物 等效介质模型 似海底反射 空白带 hydrate effective medium model BSR blanking zone
  • 相关文献

参考文献3

二级参考文献15

  • 1WOOD W T, STOFFA P L, SHIPLEY T H. Quantitative detection of methane hydrate through high-resolution seismic velocity analysis[J]. J Geophys Res,1994, 99: 9681-9695.
  • 2LEE M W, HUTCHINSON D R, DILLON W P. Seismic velocities for hydrate-bearing sediments using weighted equation[J]. J Geophys Res, 1996, 101(B9): 20347-20358.
  • 3HELGERUD M B, DVORKIN J, NUR A, et al. Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling[J]. Geophy Res Let, 1999, 26: 2021-2024.
  • 4KUSTER G T, TOKSZ M N. Velocity and attenuation of seismic waves in two-phase media: Theoretical formulation[J]. Geophysics, 1974, 39: 587-606.
  • 5YUAN T, SPENCE G D, HYNDMEN R D, et al. Seismic velocity studies of a gas hydrate bottom-simulating reflector on the northern Cascadia Continental Margin: Amplitude Modeling and full waveform inversion[J]. J Geophys Res, 1999,104: 1179-1191.
  • 6TINIVELLA U, ACCAINO F. Compressional velocity structure and Possions ration in marine sediments with gas hydrate and free gas by inversion of reflected and refracted seismic data (South Shetland Islands, Antarctica)[J]. Marine Geology, 2000, 164: 13-27.
  • 7SLOAN E D. Clathrate Hydrate of Natural Gases[M]. New York: Marcell Deckker, Inc, 1990. 641.
  • 8ECKER C. Seismic Characterization of Methane Hydrate Structures[D]. US: Standford University, 2001.
  • 9PEARSON C F, HALLECK P M, MCGULRE P L, et al. Natural gas hydrate: a review of in situ properties[J]. J Phys Chem, 1983, 87: 4180-4185.
  • 10ZIMMERMAN R W, KING M S. The effect of the extent of freezing on seismic velocities in unconsolidated permafrost[J]. Geophysics, 1986, 51: 1285-1290.

共引文献63

同被引文献103

引证文献6

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部