期刊文献+

镁原子里德堡能级的计算(英文) 被引量:3

Calculation of Rydberg energy levels for Magnesium atom
下载PDF
导出
摘要 依据最弱受约束电子势模型理论,计算了镁原子1s^2s^2p^63snp3~P_2,1,0(n=3~50)和1s^22s^22p^63sns^3S_1(n=4~50)里德堡系列的能级和量子亏损.计算结果与已有的33个实验数据符合得很好,预言了136个能级的位置. Based on the weakest bound electron potential model theory, the Rydberg energy levels and quantum defects of 1s^2 2s^2 2p^6 3snp^3P2.1.0(n=3~50) and 1s^2 2s^2 2p^6 3sns^3S1(n=4-50) spectrum series for Magnesium atom are calculated. The calculated results are in excellent agreement with the 33 known experimentally measured levels and 136 levels are predicted.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2009年第5期834-840,共7页 Journal of Atomic and Molecular Physics
基金 国家人事部留学人员科技活动项目择优资助项目(2005LXAH06) 安徽省教育厅高校省学术带头人后备人选科学研究基金(2002HBL05) 安徽省教育厅自然科学基金重点项目(KJ2008A145)
关键词 镁原子 里德堡能级 WBEPMT magnesium atom, Rydberg energy level, WBEPMT
  • 相关文献

参考文献7

  • 1Fano U.Unified treatment of the perturbed series,continuous spectra and collision[].Journal of the Optical Society of America.1975
  • 2.Energy Levels Data [DB][].NIST Atomic Spectra Database.2001
  • 3Narendra S,Man M,Eissner W.Photoionisation of ground state of Mg Ⅲ using a relativistic Breit-Pauli approximation[].Physica Scripta.2002
  • 4Martin W C.Series formulas for the spectrum of atomic sodium (Na I)[].Journal of the Optical Society of America.1980
  • 5Dyall KG,Grant IP,Johnson CT,et al.GRASP: A general purpose relativistic atomic structure program[].Computers in Physics.1989
  • 6Zheng N W,Wang T,Ma D X,et al.Weakest bound electron potential model theory[].Int J Quantum Chem.2004
  • 7Zheng N W,Ma D X,Yang R Yet al.An efficientcalculation of the energy levels of the carbon group[].The Journal of Chemical Physics.2000

同被引文献39

  • 1马堃,黄时中,于加明,刘芬.碳原子里德堡能级的计算(英文)[J].原子与分子物理学报,2009,26(1):39-44. 被引量:5
  • 2郑能武,李国胜.多电子原子和离子的等电子系参数的研究 (Ⅰ) k系数的引入与节点数的校正[J].物理学报,1993,42(5):727-734. 被引量:1
  • 3Tang A Z, Chan F T. Dynamic multipole polarizabil- ity of atomic hydrogen [J]. Phys. Rev. A, 1986, 33 : 3671.
  • 4McLachlan A D. Three-body dispersion forces[J].MoL Phys., 1963, 6:423.
  • 5Patil S H, Tang K T. Asymptotic method for polar-izabilities and dispersion coefficients: with application to hydrogen and helium systems [J].J. Chem. Phys., 1997, 107:3894.
  • 6Patil S H, Tang K T. Multipolar polarizabilities and two- and three-body dispersion coefficients for alkali isoelectronie sequences [J]. J. Chem. Phys., 1997, 106:2298.
  • 7Cebim M A, De Groote J J. Multipolar polarizabili- ties of the sodium atom by a variationally stable pro- cedure[J]. J. Chem. Phys., 2005, 123:024305.
  • 8Cebim M A, Mauro Masili, De Groote J J. High pre- cision calculation of multipolar dynamic polarizabili- ties and two- and three-body dispersion coefficients of atomic hydrogen [J].Few-Body Syst., 2009, 46: 75.
  • 9Huang S Z, Sun Q F. Higher order two- and three- body dispersion coefficients for alkali isoelectronie se- quences by a variationally stable procedure [J]. J. Chem. Phys. , 2011, 134:144110-1.
  • 10Patil S H. Adiabatic potentials for alkali-inert gas systems in the ground state[J].J. Chem. Phys. , 1991, 94. 8089.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部