期刊文献+

关于正整数幂的多重卷积公式 被引量:1

Multiple Convolution Formulas on Powers of Positive Integers
下载PDF
导出
摘要 若k个正整数的和为n,那么这k个正整数积的r次幂的多重和就是正整数的r次幂的k重卷积.使用生成函数方法首先得到了一次幂和二次幂的k重卷积的求和公式,然后借助于导数算子和第二类Stirling数给出了一般的r次幂的k重卷积的求和公式. If a sum of k positive integers equals to n, the multiple sum of the r-th powers of the product of these k positive integers is a k-fold convolution of the r-th powers of the positive integers. By means of generating function method, summation formulas of the k fold convolution of simple and double power are derived. Furthermore, the k-fold convolution formulas on the general r-th powers of positive integers are established with the derivative operator and the Stirling numbers of the second kind.
作者 林杨 郑德印
出处 《杭州师范大学学报(自然科学版)》 CAS 2009年第5期327-330,349,共5页 Journal of Hangzhou Normal University(Natural Science Edition)
基金 浙江省自然科学基金项目(Y7080320)
关键词 多重卷积 生成函数 第二类STIRLING数 multiple convolution generating function Stirling number of the second kind
  • 相关文献

参考文献5

  • 1Russell Merris.Combinatorics[]..2003
  • 2Chu Wenchang,Yan Qinglun.Multiple convolution formulae on bivariate Fibonacci and Lucas plynomials[].Utilitas Mathematica.2007
  • 3Chu Wenchang,Wang Xiaoyuan.Multiple convolutionformulae on classical combinatorial numbers[].Integers:The Eletronic Journalof Combinatorial Number Theory.2007
  • 4Comtet L.Advanced combinatorics[]..1974
  • 5R. Graham,D. Knuth,O. Patashnik.Concrete Mathematics: A Foundation for Computer Science[]..1994

同被引文献7

  • 1吴跃生.求自然数k次幂和的又一种方法[J].高师理科学刊,2006,26(3):17-19. 被引量:1
  • 2DavisH T. The summation of series[M]. San Antonio: Principia Press of Trinity University, 1962.
  • 3Graham R L, Knuth D E, Patashnik O. Concrete Mathematics: A Foundation for Computer Science[M]. 2th ed. Massachusetts: Addison-Wesley Publishing Company, 1998.
  • 4Bang S J. Nearest Integer Zeta Functions[J]. The American Mathematical Monthly, i994, 101 ( 6 ): 579-530.
  • 5Doster D. Problems 10346: Cubic Polynomials from Curious Sums[J]. The American Mathematical Monthly, 1997, 104( 1 ): 78-79.
  • 6Niven I, Zuekerman H S, Montgomery H L. An Introduction to the Theory of Numbers[M]. 5th ed. New York : John Wiley & .Sons Inc, 1991.
  • 7吴琳聪,莫国良.自然数k次幂的一种求和方法及实现[J].高等数学研究,2012,15(1):54-55. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部