期刊文献+

基于多目标的模糊神经网络及在pH控制过程中的应用 被引量:1

Multi-objective optimization based FRNN and its application to pH control process
下载PDF
导出
摘要 设计了一种基于多目标的动态模糊递归神经网络(FRNN)建模方法,用于pH中和过程的广义预测控制。所设计的多目标优化算法以提高拟合精度和简化网络结构为原则,同时优化模糊神经网络中的模糊规则数、隶属度函数中心点及其宽度,由此得到的FRNN模型可以高精度拟合pH中和过程。依据该动态模型,在控制过程的每一个控制周期得到其局部线性模型,将广义预测控制中复杂的非线性优化问题转化为简单的二次线性规划问题。仿真对比结果验证了所提方法的有效性。 A multi-objective optimization based dynamic fuzzy recurrent neural network (FRNN) modeling method was designed to control the pH neutralization process by generalized predictive controller (GPC). To improve the FRNN fitting accuracy and simplify the network structure, a multi-objective optimization algorithm was proposed to optimize fuzzy rule numbers, center points and widths of Gaussian membership functions. The dynamic FRNN model was then obtained to precisely fit the pH neutralization process. Based on the dynamic model, the local linear model could be obtained at every control period. The complex non-linear optimization problem of GPC was changed into a simple quadratic linear programming problem. Simulation results showed the feasibility of the proposed method.
出处 《化工学报》 EI CAS CSCD 北大核心 2009年第11期2820-2826,共7页 CIESC Journal
基金 国家自然科学基金项目(60874072)~~
关键词 多目标优化 模糊递归神经网络 广义预测控制 PH中和过程 multi-objective optimization fuzzy recurrent neural network generalized predictive control pH neutralization process
  • 相关文献

参考文献1

二级参考文献15

  • 1程武山.基于遗传神经网络的烧结终点预测系统[J].烧结球团,2004,29(5):18-22. 被引量:10
  • 2于希宁,程锋章,朱丽玲,刘利.基于改进T-S模型的模糊辨识算法及其应用[J].系统仿真学报,2007,19(3):505-509. 被引量:11
  • 3Peng Rongqiu(彭荣秋),Ren Hongjiu(任鸿九),Zhang Xunpeng(张训鹏),et al.Metallurgy of Lead and Zinc (铅锌冶金学).Beijing:Science Press,2003:92-108
  • 4Wu Min, Xu Chenhua, Du Yuxiao. Intelligent optimal control for lead-zinc sintering process state. Trans.Nonferrous Met. Soc. China, 2006, 16 (4): 975-981
  • 5Hu J Q, Rose E. Predictive fuzzy control applied to the sinter strand process. Control Engineering Practice, 1997, 5 (2): 247-252
  • 6Kwon Wook Hyun, Kim Yong Ho, Lee Sang Jeong, Paek Ki Nam. Event-based modeling and control for the burn through point in simering processes. IEEE Trans. Control Syst. Technol., 1999, 7 (1):31-41
  • 7Huang Y L, Lou Helen H, Gong J P, Edgar Thomas F. Fuzzy model predictive control. IEEE Trans. Fuzzy Syst., 2000, 8 (6): 665-678
  • 8Janos Abonyi, Lajos Nagy, Ferenc Szeifert. Fuzzy model-based predictive control by instantaneous linearization. Fuzzy Sets Syst., 2001, 120 (1): 109-122
  • 9Marsili Libelli S, Giunti L. Fuzzy predictive control for nitrogen removal in biological wastewater treatment. Water Science and Technology, 2002, 45 (4/5): 37-44
  • 10Flores A, Saez D, Araya J, Berenguel M, Cipriano A. Fuzzy predictive control of a solar power plant. IEEE Trans. Fuzzy Syst., 2005, 13 (1): 58-68

共引文献2

同被引文献18

  • 1王高平,王永骥.改进的多目标遗传算法在营养决策中应用[J].计算机工程与应用,2007,43(4):198-200. 被引量:7
  • 2NIE J H, LOH A P, HANG C C. Modeling pH neutralization pro- cesses using fuzzy-neural approaches[J]. Fuzzy Sets and Systems, 1996, 78(1): 5 - 22.
  • 3LIN C J, CHEN C H. A compensation-based recurrent fuzzy neural network for dynamic system identification[J]. European Journal of Operational Research, 2006, 172(2): 696 - 715.
  • 4BARBOUNISA T G, THEOCHARIS J B. A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation[J]. Neurocomputing, 2007, 70(7/9): 1525 - 1542.
  • 5PARK S, BHARGAVA S, CHASE G. Fitting of kinetic parameters of NO reduction by CO in fibrous media using a genetic algorithm[J]. Computer & Chemical Engineering, 2010, 34(4): 485 - 490.
  • 6CHOI JN, OH SK, PEDRYCZ W. Identification of fuzzy models us- ing a successive tuning method with a variant identification ratio[J]. Fuzzy Sets and Systems, 2008, 159(21): 2873 - 2889.
  • 7KHALED B. Genetic algorithm for the design of a class of fuzzy controller: an alternative approach[J]. IEEE Transactions on Fuzzy Systems, 2008, 8(8): 398 -405.
  • 8TAO J L, WANG N. DNA computing based RNA genetic algo- rithm with applications in parameter estimation of chemical engineer- ing processes[J]. Computers & Chemical Engineering, 2007, 31(12): 1602- 1618.
  • 9CHEN X, WANG N. A DNA based genetic algorithm for parameter estimation in the hydrogenation reaction[J]. Chemical Engineering Journal, 2009, 150(2/3): 527 - 535.
  • 10NAHAS EP, HENSON MA, SEBORG DE. Nonlinear internal model control strategy for neural network models[J]. Computers & Chemi- cal Engineering, 1992, 16(12): 1039- 1057.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部