期刊文献+

应用ABEEMσπ/MM模型探讨小α-螺旋在显性水中折叠/展开的可逆过程 被引量:4

Reversible folding/unfolding of small α-helix in explicit solvent investigated by ABEEMσπ/MM
原文传递
导出
摘要 应用ABEEMσπ/MM模型进行分子动力学模拟,研究了显性水溶液中小α-螺旋(短肽Ala5)折叠/展开的可逆过程.动力学分析显示,300K下α-螺旋可以保存2ns的时间,该结果支持Margulis等人的结论.每个结构与α-螺旋结构骨架重原子的均方根偏差的时间轨迹指出,"300K下螺旋成核现象在0.1ns内快速发生"的结论是不恰当的.通过对300、400和500K温度下的研究,首次定量地给出各温度下螺旋保存的时间分别为2ns、1~1.5ns和0.8ns,并且增加温度并不改变折叠/展开的方式,只是改变折叠/展开的速率.本文对"转化态集合"结构的分析表明,从螺旋到卷曲的转换,主要通过螺旋端的氢键断裂发生(92%)、尤其是C端的氢键断裂发生(50%).氢键的破坏和形成在0.1ns的时间内完成. We have performed molecular dynamics simulations on the reversible folding/unfolding of small (z-helix (short Ala based peptide Ala5) in explicit water solvent in terms of ABEEMσπ/MM. A dynamics analysis shows that the α-helical turn can be preserved up to a period of about 2 ns at 300 K, which supports the conclusions of Margulis et al. The time trajectory of the root mean square deviation between the heavy atoms of the backbone and the helical reference structure indicate that "helix melting and formation occurs rapidly on a time scale of 0.1 ns at 300 K" is not a felicitous conclusion. We first quantificationally concluded that the helix nucleation can maintain 2 ns, 1-1.5 ns and 0.8 ns for Alas at 300 K, 400 K and 500 K, respectively. Furthermore, increasing temperature dose not alter the pathway of folding/unfolding, but change the rate. An analysis of structures in a "transition-state ensemble" shows that helix-to-coil transitions occurs predominantly through breaking of hydrogen bonds at the helix ends (92%), particularly at the C-terminus(50%). Hydrogen bonds' breaking and formation occurs on a time scale of 0.1 ns.
作者 刘翠 杨忠志
出处 《中国科学(B辑)》 CAS CSCD 北大核心 2009年第11期1461-1468,共8页 Science in China(Series B)
基金 国家自然科学基金(批准号:20633050)资助
关键词 蛋白质折叠/展开可逆过程 ALAS 温度 氢键 reversible folding/unfolding of protein, Ala5, temperature, hydrogen bond
  • 相关文献

参考文献2

二级参考文献22

共引文献7

同被引文献18

  • 1钱萍,杨忠志.应用ABEEM/MM模型研究水分子团簇(H_2O)_n(n=11~16)的性质[J].物理化学学报,2006,22(5):561-568. 被引量:9
  • 2PAULING L. The nature of the chemical bond[M]. 3rd edition. Ithaca:Cornell University Press,1960.
  • 3FERSHT A. Enzyme structure and mechanism[M]. New York:W H Freeman, 1985.
  • 4GRIMME S. Semiempirical hybrid density functional with perturbative second-order correlation[J]. J Chem Phys, 2006,124:034108.
  • 5TSUZUKI S,UCHIMARU T,MATSUMURA K,et al. Effects of basis set and electron correlation on the calculated interaction energies of hydrogen bonding complexes: MP2/ec-pV5 Z calculations of Hz O-MeOH, Hz O-Mez O, Hz O- Hz CO, MeOH-MeOH, and HCOOH-HCOOH complexes[J]. J Chem Phys, 1999,110 : 11906-11910.
  • 6BOYS S F,BERNARDI F. The calculation of small molecular interactions by the differences of separate total energies. Some pro- cedures with reduced errors[J]. Mol Phys, 1970,19:553-566.
  • 7HUANG N,MACKERELL Jr A D. An ab initio quantum mechanical study of hydrogen-bonded complexes of biological interes[J]. J Phys Chem A,2002,106 : 7820-7827.
  • 8ZHAO D X,LIU C,WANG F F,et al. Development of a polarizable force field using multiple fluctuating charges per atom[J]. J Chem Theory Comput,2010,6:795-804.
  • 9WANG F F,GONG L D,ZHAO D X. Studies on the torsions of nucleic acids using ABEEMa:/MM metho[J]. Theochem-J Mol Struct, 2009,909 : 49-56.
  • 10LI X, YANG Z Z. Hydration of Li+-ion in atom-bond electronegativity equalization method-7P water:A molecular dynamics sim- ulation study[J]. J Chem Phys,2005,122:084514.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部