摘要
This paper considers parametric control of high-order descriptor linear systems via proportional plus derivative feedback. By employing general parametric solutions to a type of so-called high-order Sylvester matrix equations, complete parametric control approaches for high-order linear systems are presented. The proposed approaches give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices, and produce all the design degrees of freedom. Fur-thermore, important special cases are particularly treated. Based on the proposed parametric design approaches, a parametric method for the gain-scheduling controller design of a linear time-varying system is proposed and the design of a BTT missile autopilot is carried out. The simulation results show that the method is superior to the traditional one in sense of either global stability or system performance.
This paper considers parametric control of high-order descriptor linear systems via proportional plus derivative feedback. By employing general parametric solutions to a type of so-called high-order Sylvester matrix equations, complete parametric control approaches for high-order linear systems are presented. The proposed approaches give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices, and produce all the design degrees of freedom. Fur-thermore, important special cases are particularly treated. Based on the proposed parametric design approaches, a parametric method for the gain-scheduling controller design of a linear time-varying system is proposed and the design of a BTT missile autopilot is carried out. The simulation results show that the method is superior to the traditional one in sense of either global stability or system performance.
基金
Supported by the Major Program of the National Natural Science Foundation of China (Grant No. 60710002)
the Program for Changjiang Scholars and Innovative Research Team in University, Self-planed Task of State Key Laboratory of Robotics and System (Grant No.SKLRS200801A03)
and the Key Programs of Heilongjiang Province (Grant No. ZJC603)