摘要
The displacement damage dose methodology for analysing and modelling the performance of triple-junction InGaP2/GaAs/Ge solar cells in an electron radiation environment is presented. Degradations at different electron energies are correlated with displacement damage dose (Dd). One particular electron radiation environment, relative to a geosynchronous earth orbit (GEO), is chosen to calculate the total Dd behind the different thicknesses coverglasses to predict the performance degradation at the end of the 15-year mission.
The displacement damage dose methodology for analysing and modelling the performance of triple-junction InGaP2/GaAs/Ge solar cells in an electron radiation environment is presented. Degradations at different electron energies are correlated with displacement damage dose (Dd). One particular electron radiation environment, relative to a geosynchronous earth orbit (GEO), is chosen to calculate the total Dd behind the different thicknesses coverglasses to predict the performance degradation at the end of the 15-year mission.
基金
Project supported by the National Key Laboratory for Vacuum & Cryogenics Technology and Physics Foundation of China (Grant No 9140C5503060802)
the National High Technology Development Program of China (Grant No 2007AA042431)