期刊文献+

基于FastSLAM的RoboCup家庭组机器人自定位方法研究

Study on Self-localization System of RoboCup@Home Robot Based on FastSLAM
下载PDF
导出
摘要 FastSLAM算法为机器人定位与地图构建开辟了新的研究方向,研究该理论在RoboCup家庭组机器人自定位系统上的应用。从贝叶斯滤波理论,Rao-Blackwellised解耦,粒子滤波器原理等方面论述了FastSLAM的关键技术及基本理论。针对家庭组机器人非结构化场景的特殊情况,提出基于FastSLAM的定位策略。仿真结果表明算法的有效性和鲁棒性,能够为家庭机器人在非结构化场景中的定位问题提供有效地解决方案。 FastSLAM theory has opened a new research direction for robot localization and mapping, and its application on Self-Localization System of RoboCup@Home Robot was studied. The key technology and basic theory of FastSLAM were covered from aspects of Bayes filter theory, Rao-Blackwellised factorization and particle filter. A localization method based FastSLAM was proposed, specifically to the unstructured scenes for RoboCup@Home Robot. Simulation results prove the effectiveness and robustness of the method which can provide effective solution for the self-localization problem of RoboCup @Home Robot under unstructured scenes.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第21期6781-6785,共5页 Journal of System Simulation
基金 上海市重点学科建设项目(T0103)
关键词 FASTSLAM RoboCup家庭组机器人 自定位 非结构化场景 FastSLAM RoboCup@Home Robot self-localization unstructured scenes
  • 相关文献

参考文献10

  • 1Murphy K.Bayesian map learning in dynamic environments[].Proceedings of Advances in Neural Information Processing Systems (NIPS).2000
  • 2Thrun S,Fox D,Burgard W.Probabilistic Robotics[]..2005
  • 3Zhang Pifu.Navigation with IMU/GPS/Digital Compass with unscented kalman filter[].IEEE International Conference on Mechatronics&Automation.2005
  • 4Montemerlo M,Thrun S.Simultaneous localization and mapping with unknown data association using FastSLAM[].IEEE International Conference on Robotics and Automation.2003
  • 5Montemerlo M,Thrun S,Koller D,et al.Fastslam2.0:an improved particle filtering algorithm for simultaneous localization and mapping that provably converges[].International Joint Conference on Artificial Intelligence.2003
  • 6Bailey T,Whyte H D.Simultaneous Localization and Mapping Part:State of Art[].Robotics and Automation Magazine.2006
  • 7Chatila R,Laumond J.Position referencing and consistent world modeling for mobile robots[].IEEE Transactions on Robotics and Automation.1985
  • 8Dissanayake G M W M,Newman P,Clark S,et al.A solution to the simultaneous localization and map building (SLAM) problem[].IEEE Transactions on Robotics and Automation.2001
  • 9Thrun S,Fox D,Burgard W,et al.Robust Monte Carlo localization for mobile robots[].Artificial Intelligence.2001
  • 10Arulampalam MS,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[].IEEE Transactions on Signal Processing.2002

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部