期刊文献+

基于MCD和局部线性高斯模型的视频跟踪粒子滤波算法 被引量:4

Particle Filter Algorithm for Visual Tracking Based on MCD and Partial Linear Gaussian Models
下载PDF
导出
摘要 为了提高粒子传播过程中状态空间的质量和视频跟踪算法的精度,提出了一种基于MCD和局部线性高斯模型的粒子滤波算法,这种MCD方法摒弃了传统的像素匹配贡献均等的方式,而是采用像素点间的邻近度作为相似性度量。由于该方法所获得的相关曲面更尖锐,且匹配置信度更高,而局部线性高斯模型则可使得在粒子传播过程中能使用最佳的重要函数,因此两者结合能够实现最佳粒子滤波。由于MCD方法的鲁棒性,从而使得跟踪算法对环境的适应能力和稳定性得到提高。两个仿真实验的结果说明,该算法是可行的与优越的。 In order to improve the quality of the state-space exploration and the accuracy of visual tracking, in this paper a particle filter algorithm based on maximum close distance (MCD) and partial linear Gaussian models is presented. MCD avoids the problem that each pair of pixels in the image contribute to the matching result equally. The proposed method uses neighborhood between pixels as the matching similarity. The correlation curve obtained in this way is much sharper. So the image matching method has high matching precision. A direct consequence of using partial linear Gaussian models is that the optimal importance function is adopted. The combination of them will be the optimal particle filter. The stability of the algorithm has been improved due to the robustness of MCD. Two simulated experiments are finally carried out to confirm the validity of the improved algorithm.
作者 夏瑜 吴小俊
出处 《中国图象图形学报》 CSCD 北大核心 2009年第11期2223-2229,共7页 Journal of Image and Graphics
基金 教育部新世纪优秀人才计划项目(NCET-06-0487) 国家自然科学基金项目(60472060 60572034 90820002) 江苏省自然科学基金项目(BK2006081)
关键词 粒子滤波 最佳重要函数 有效确认域 最佳相似距离 particle filter, optimal importance function, validation gate, maximum close distance(MCD)
  • 相关文献

参考文献3

二级参考文献3

  • 1杨皓筠.相关跟踪中若干关键问题的研究:硕士学位论文[M].武汉:华中科技大学图象识别与人工智能研究所,2000,4..
  • 2钟玉琢,王琪,贺玉文等.基于对象的多媒体数据压缩编码国际标准MPE G-4[M].北京:科学出版社,2000.
  • 3罗光明,黄晓宇.MPEG-4的标准的极低位速率视频技术[J].无线电工程,2001,31(5):38-41. 被引量:1

共引文献60

同被引文献35

  • 1刘翔.基于光流场算法的运动估计方法研究[J].无线电工程,2006,36(4):17-20. 被引量:6
  • 2李刚,邱尚斌,林凌,曾锐利.基于背景差法和帧间差法的运动目标检测方法[J].仪器仪表学报,2006,27(8):961-964. 被引量:111
  • 3Liu Hong, Yu Ze, Zha Hong-bin, et al.Robust human tracking based on multi-cue integration and mean-shift[J].Pattern Recognition Letters, 2009, 30(7): 827-837.
  • 4I.Leichter, M.Lindenbaum, E.Rivin.Tracking by affine kernel transformations using color and boundary cues[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(1): 164-171.
  • 5K.Fukunage, L.D.Hostetler.The estimation of the gradient of a density function with application in pattern recognition[J].IEEE Trans.Information Theory, 1975, 21(1): 32-40.
  • 6Cheng Yi-zong.Mean Shift, mode seeking, and clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799.
  • 7D.Comaniciu, P.Meer.Mean Shift: a robust application toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 8I.Leichter, M.Lindenbaum, E.Rivin.Mean Shift tracking with multiple reference color histograms[J].Computer Vision and Image Understanding, 2010, 114(3): 400-408.
  • 9S.T.Birchfield,S.Rangarajan.Spatiograms versus histograms for region-based tracking[M].United States:Institute of Electrical and Electronics Engineers Computer Society, 2005: 1158-1163.
  • 10R.T.Collins, Y.Liu, M.Leordeanu.Online selection of discriminative tacking features[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1631-1643.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部