期刊文献+

一种保边缘影像超分辨率重建方法 被引量:3

An Edge-preserving Image Super-resolution Reconstruction Method
下载PDF
导出
摘要 提出了一种基于方向性平滑测度的保边缘加权马尔可夫先验模型,并将其应用到基于最大后验估计的影像超分辨率重建中。该模型对邻域内不同方向的平滑测度使用不同的权值,以此减小对影像高频成分的惩罚约束,进而保护影像的边缘。利用不同影像对本文方法进行了验证,并用MSE影像评价方法对重建影像进行了定量评价。实验结果表明,与传统马尔可夫先验模型相比,加权马尔可夫先验模型能有效保护影像的边缘,取得更好的重建结果。 In this paper we introduce a new MAP-based super-resolution method, which can effectively preserve image edges by using an improved directional image prior model. The proposed image prior model, which we refer to as a weighted directional Markov image prior model, utilizes different weights for different directional smoothness measures of the edge pixels. Definitely, larger weights are chosen for smooth measures along the edge in order to penalize them to a larger extent and smaller weights are chosen for smooth measures across the edge for a less penalization. Thus, the edges of the reconstructed HR image can be effectively persevered. The proposed algorithm is tested on different series of images. The experimental results indicate that the proposed algorithm has considerable effectiveness in terms of both objective measurements and visual evaluation.
出处 《中国图象图形学报》 CSCD 北大核心 2009年第11期2255-2261,共7页 Journal of Image and Graphics
基金 国家重点基础研究发展规划(973)基金项目(2009CB723905) 国家高技术研究发展计划(863)项目(2007AA12Z148 2009AA12Z114) 国家自然科学基金项目(40771139 40523005) 农业部资源遥感与数字农业重点开放实验室基金项目(RDA0801) 矿山空间信息技术国家测绘局重点实验室基金项目(KLM2008)
关键词 超分辨重建 最大后验估计 边缘护保 加权马尔可夫先验 super-resolution, MAP, edge-preserving, weighted Markov random field prior
  • 相关文献

参考文献2

二级参考文献20

  • 1章毓晋.图像工程[M].北京:清华大学出版社,2002..
  • 2Xin L, Orchard, M.T. New Edge-Directed Interpolation[J]. IEEE Transactions, Image Processing, 2001,10(10):1521-1527.
  • 3Zhou W, Alan C Bovik. A Universal Image Quality Index[J]. IEEE Signal Processing Letters, 2002, 9(3):81-84.
  • 4John Fryer, Kerry McIntosh. Enhancement of Image Resolution in Digital Photogrammetry[J].Photogrammetric Engineering and Remote Sensing,2001,67(6):741-749.
  • 5Battiato S, Buemi A, Mancuso M, et al. Adaptive Techniques for Digital Images Resolution Enhancement[A]. ICCE ( International Conference on Consumer Electronics)[C],2002.
  • 6Simant Dube,Li H.An Adaptive Algorithm for Image Resolution Enhancement[J].IEEE Signals,Systems and Computers,2000,2:1731-1734.
  • 7张祖勋 张剑清.数字摄影测量学[M].武汉:武汉大学出版社,2002..
  • 8Tsai R Y, Huang T S. Multiple Frame Image Restoration and Matching[C]. Advances in Computer Vision and Image Processing, Greenwich, 1984
  • 9Tekalp A M, Ozkan M K, Sezan M I. High-resolution Image Reconstruction from Lower-resolution Image Sequences and Space-varying Image Restoration[C].The IEEE International Conference on Acousics, Speech and Signal Processing, San Francisco, CA, 1992
  • 10Davila C E. Efficient Recursive Total Least Squares Algorithms for FIR Adaptive Filtering [J].IEEE Trans on Signal Processing, 1994, 42(2) : 268-280

共引文献27

同被引文献36

  • 1禹晶,苏开娜,肖创柏.一种改善超分辨率图像重建中边缘质量的方法[J].自动化学报,2007,33(6):577-582. 被引量:22
  • 2Davila C E. An efficient recursive total least squares algorithms for FIR adaptive filtering [ J ]. IEEE Transactions on Signal Processing, 1994,42 ( 2 ) :268-280.
  • 3Stark H, Oskoui P. High resolution image recovery from imageplancarrays, using convex projections [ J ]. Journal of Optical Society of America A-Optics Image Science and Vision, 1989, 6(11) :1715-1726.
  • 4Patti A J, Ahunbasak Y. Artifact reduction for set theoretic super resolution image reconstruction with edge adaptive constrains and higher-order interpolants [ J ]. IEEE Transactions on Image Processing,2001,10 ( 1 ) : 179-186.
  • 5Sehultz R R, Stevenson R L. Extraction of high-resolution frames from video sequences [ J ]. IEEE Transactions on Image Processing, 1996,5(6) :996-1011.
  • 6Nguyen N X. Numerical Algorithms for Imagesuper-resolution [ D]. California: Stanford Univers-ity,2000.
  • 7Bose N K. Super-resolution with second gene-ration wavelets [ J ]. Signal Processing: Image Co-mmunication, 2004, 19 ( 5 ) : 387-391.
  • 8Kundur D, Hatzinakos D. Blind image deconvol-ution [ J ]. IEEE Signal Processing Magazine, 1996,13 ( 3 ) :43-64.
  • 9Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [ J]. Physica D, 1992,60(1-4) :259-268.
  • 10Babacan S D, Molina R, Katsaggelos A K. Total variation super resolution using a variational approach [ C ]//Proceedings of 15th IEEE International Conference on Image Processing. San Diego, CA, USA : IEEE Computer Society ,2008:641-644.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部