期刊文献+

基于推荐机制的网格资源匹配算法研究 被引量:5

Recommendation-Based Grid Resource Matching Algorithm
下载PDF
导出
摘要 针对网格计算环境下,参与计算用户和计算资源规模日益庞大,用户申请资源过程中所需的资源匹配过程逐步复杂化和大规模化,提出了一种基于推荐机制的网格资源匹配算法.以往的网格计算资源的匹配和调度算法需要在调度计算时遍历所有网格资源,而改进的基于SVD(奇异值分解)的协同过滤算法考虑了用户行为相关性和资源使用频度的相关性,通过用户对资源项的使用历史记录建立用户对资源的满意度评分体系,利用推荐机制给出用户推荐资源集以到达资源匹配的效果.从一个新的角度给出了解决大量资源匹配的方法. Focusing on the problem of applying and matching resources under large-scale users and computing resources in grid environment, a kind of recommendation-based grid resource matching algorithm is presented. Many existing grid resource matching and scheduling algorithms have to search and compare every grid computing resource node without considering features of grid resources and users' behaviors, while recommendation system as widely used means in e-commerce could solve all of these two problems well. To utilize recommendation mechanism could pretreat information of users and resources by translating features of grid resources to eigenvectors of items in recommendation system and setting up a satisfaction grade system considering history records with features described in resources applying process that reflect the users' behaviors through the frequency users computed in resource nodes. Then, the authors improve SVD-based (singular value decomposition) collaborative filtering algorithm that can give users recommendation resource sets by computing the best approximate resource features to users' behavior features matrix. Especially, the grid resource matching algorithm could mine latent features from given data, efficiently overcome the extreme sparsity of user satisfaction grade data and make use of feedback information from resources scheduling. The problem of matching a mass of resources is solved in a novel way from a new perspective.
出处 《计算机研究与发展》 EI CSCD 北大核心 2009年第11期1814-1820,共7页 Journal of Computer Research and Development
基金 国家"八六三"高技术研究发展发展计划基金项目(2006AA01A121)~~
关键词 网格 资源匹配 推荐机制 奇异值分解 协同过滤算法 grid resource matching recommendation mechanism SVD collaborative filtering algorithm
  • 相关文献

参考文献2

二级参考文献20

  • 1J Breese, D Hecherman, C Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In: Proc of the 14th Conf on Uncertainty in Artificial Intelligence (UAI98) . San Francisco,CA: Morgan Kaufmann, 1998. 43~52
  • 2B Sarwar, G Karypis, J Konstan, et al. Item-based collaborative filtering recommendation algorithms. In: Proc of the 10th Int'l World Wide Web Conf. New York: ACM Press, 2001. 285~295
  • 3A Dempster, N Laird, D Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977, 39(1): 1~38
  • 4B Thiesson, C Meek, D Chickering, et al. Learning mixture of DAG models. Microsoft Research, Tech Rep: MSR-TR-97-30,1997
  • 5B Sarwar, G Karypis, J Konstan, et al. Analysis of recommendation algorithms for E-commerce. In: Proc of the 2nd ACM Conf on Electronic Commerce. New York: ACM Press,2000. 158~167
  • 6J Wolf, C Aggarwal, K-L Wu, et al. Horting hatches an egg: A new graph-theoretic approach to collaborative filtering. In: Proc of the 5th ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining. New York: ACM Press, 1999. 201~212
  • 7C C Aggarwal. On the effects of dimensionality reduction on high dimensional similarity search. In: Proc of the 20th ACM SIGMOD-SIGACT-SIGART Symp on Principles of Database Systems. New York: ACM Press, 2001. 256~266
  • 8B Kitts, D Freed. Cross-sell: A fast promotion-tunable customeritem recommendation method based on conditionally independent probabilities. In: Proc of ACM SIGKDD2000. New York: ACM Press, 2000. 437~446
  • 9Imielinski T, Khachiyan L, Abdulghani A. Cubegrades: Generalizing association rules. In: Proc. of the 8th Int'l Conf. on Data Mining and Knowledge Discovery. Edmonton: ACM Press, 2002. 219-257.
  • 10Lakshmanan VS, Pei J, Han JW. Quotient cube: How to summarize the semantics of a data cube. In: Proc. of the 28th Int'l Conf. on Very Large Data Bases. Hong Kong: Morgan Kaufmann Publishers, 2002. 778-789.

共引文献107

同被引文献56

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部