期刊文献+

一种新的SVM主动学习算法及其在障碍物检测中的应用 被引量:14

An SVM Active Learning Algorithm and Its Application in Obstacle Detection
下载PDF
导出
摘要 障碍物检测是智能机器人要解决的非结构复杂环境感知的典型问题之一.在实际情况中,获得大量未标记样本是相对容易的,而标记这些样本则是极其繁琐和费时的工作,当前的研究工作很少涉及到这类问题的解决办法.将SVM主动学习算法引入到障碍物检测中,针对常规的SVM主动学习算法在应用中所遇到的问题和局限性,采用一种动态聚类过程来选取最有代表性样本和根据专家标记与当前SVM分类结果的差值来调整SVM超平面位置的两种策略对其进行了改进,提出了一种新的主动学习算法——KSV Mactiv算法,并在真实的野外环境图像库上进行了实验.由实验结果可知:KSVMactiv算法仅用81个样本就能达到很高的检测效果,从而说明它能显著减少数据标记的工作量,且与已有主动学习算法相比收敛速度更快. Obstacle detection is one of the tasks which are solved for intelligent robot in the unstructured complicated environment perception.Large amounts of training data are usually necessary in order to achieve satisfactory generalization, and attaining these training data is also relatively easy. While manually labeling data is an expensive and tedious process. The current research work related to the solutions of the above problems is also very limited. Active learning algorithm is introduced to obstacle detection here. Aiming at the problems and limitations in the process of applying general active learning algorithm, two strategies are used to improve general SVM active learning algorithm. These two strategies use a dynamic clustering to select the best representative samples and, according to the difference of expert's labeling and current SVM classification results, to tune the SVM hyperplane location. At the same time, a new SVM active learning algorithm is proposed, that is KSVMactive. Experiments are carried out in real wilderness environment image database. Experimental results demonstrate: very good detection results are obtained using KSVMactiv algorithm with only 81 samples, which can show that it can significantly reduce the workload of labeling data, and its convergence is better than other active learning algorithms.
出处 《计算机研究与发展》 EI CSCD 北大核心 2009年第11期1934-1941,共8页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60705020) 国家"八六三"高技术研究发展计划基金项目(2006AA04Z238)~~
关键词 智能机器人 障碍物检测 KSV Mactive K均值聚类 超平面位置校正 intelligent robot obstacle detection KSVMactive K-means clustering hyperplane location correction
  • 相关文献

参考文献5

二级参考文献21

  • 1徐彤阳,姚跃华,朱志勇.一种基于支持向量机的图像边缘检测方法[J].微机发展,2005,15(1):87-90. 被引量:7
  • 2武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 3Schohn G, Cohn D. Active learning with support vector machines[A]. In: Proceedings of the Seventeenth International Conference on Machine Learning(ICML-2000)[C]. California:[s.n.], 2000.839-846.
  • 4Tong S, Chang E. Support vector machine active learning for image retrieval [A]. In: Proceedings of ACM International Conference on Multimedia [C]. Ottawa: [s. n.], 2001. 107-118.
  • 5Goh K,Li B,Chang E Y. DynDex:A dynamic and non-metric space indexer[A]. In: Proceedings of ACM International Conference on Multimedia[C].Juan Les Pin, France: [s. n.],2002. 466-475.
  • 6CristianiniN Shawe-TaylorJ 李国正译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 7VAPNIKVN 张学工译.统计学习理论的本质[M].清华大学出版社,2000..
  • 8A L Blum,P Langley.Selection of relevant features and examples in machine learning[J].Artificial Intelligence,1997,97(12):245-271
  • 9R E Schapire.The boosting approach to machine learning:An overview[C].MSRI Workshop on Nonlinear Estimation and Classification,Berkeley,CA,2002
  • 10L Breiman.Bagging predictors[J].Machine Learning,1996,24(2):123-140

共引文献55

同被引文献171

引证文献14

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部