期刊文献+

Two-Parameter Weak Hopf Algebras Corresponding to Borcherds-Cartan Matrix

相应于Borcherds-Cartan矩阵的双参数弱Hopf代数(英文)
下载PDF
导出
摘要 In this paper a class of two-parameter weak Hopf algebras wrτ,s(g) corresponding to Borcherds-Cartan matrix is constructed. This class consists of noncommutative and noncocommutative weak Hopf algebras but not Hopf algebras. It can be viewed as a generalized class of one-parameter weak Hopf algebras wUq(g). In this paper a class of two-parameter weak Hopf algebras wrτ,s(g) corresponding to Borcherds-Cartan matrix is constructed. This class consists of noncommutative and noncocommutative weak Hopf algebras but not Hopf algebras. It can be viewed as a generalized class of one-parameter weak Hopf algebras wUq(g).
出处 《Journal of Mathematical Research and Exposition》 CSCD 2009年第6期961-973,共13页 数学研究与评论(英文版)
基金 the National Natural Science Foundation of China (Nos.10671016 10771014) the Foundation of Beijing Educational Committee (No.KM200710005013)
关键词 Kac-Moody algebras weak antipode Borcherds-Cartan matrix. 弱Hopf代数 Cartan矩阵 赫兹 双参数 矩阵构造 非交换 嘉当
  • 相关文献

参考文献11

  • 1DU Jie, PARSHALL B, WANG Jianpan. Two-parameter quantum linear groups and the hyperbolic invariance ofq-Schur algebras [J]. J. London Math. Soc. (2), 1991, 44(3): 420-436.
  • 2DOBREV V K, PARASHAR P. Duality for multipararnetric quantum GL(n) [J]. J. Phys. A, 1993, 26(23): 6991-7002.
  • 3BERGERON N, GAO Yun, HU Naihong. Drinfel'd doubles and Lusztig's symmetries of two-parameter quantum groups [J]. J. Algebra, 2006, 301(1): 378-405.
  • 4BOHM G, NILL F, SZLACHANYI K. Weak Hopfalgebras. L Integral theory and C*-structure [J]. J. Algebra, 1999, 221(2): 385-438.
  • 5HAYASHI T. An algebra related to the fusion rules of Wess-Zumino-Witten models [J]. Lett. Math. Phys., 1991, 22(4): 291-296.
  • 6YAMANOUGHI T. Duality for generalized Kac algebras and a characterization of finite groupoid algebras [J]. J. Algebra, 1994, 163(1): 9-50.
  • 7LI Fang. Weak Hopf algebras and some new solutions of the quantum Yang-Baxter equation [J]. J. Algebra, 1998, 208(1): 72-100.
  • 8YANG Shilin. Weak Hopf algebras corresponding to Caftan matrices [J]. J. Math. Phys., 2005, 46(7): 073502.
  • 9BORCHERDS R. E. Generalised Kac-Moody algebras [J]. J. Algebra, 1988, 115(2): 501-512.
  • 10WU Zhixiang. A class of Weak Hopf algebras related to a Borcherds-Cartan matrix [J]. J. Phys. A, 2006, 39(47): 14611-14626.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部