摘要
Let d be the smallest generator number of a finite p-group P and let Md(P) = {P1,...,Pd} be a set of maximal subgroups of P such that ∩di=1 Pi = Φ(P). In this paper, we study the structure of a finite group G under the assumption that every member in Md(Gp) is S-semipermutable in G for each prime divisor p of |G| and a Sylow p-subgroup Gp of G.
Let d be the smallest generator number of a finite p-group P and let Md(P) = {P1,...,Pd} be a set of maximal subgroups of P such that ∩di=1 Pi = Φ(P). In this paper, we study the structure of a finite group G under the assumption that every member in Md(Gp) is S-semipermutable in G for each prime divisor p of |G| and a Sylow p-subgroup Gp of G.
基金
the National Natural Science Foundation of China (No.10161001)
the Natural Science Foundation of Guangxi Autonomous Region (No.0249001)
a Research Grant of Shanghai University(No.SHUCX091043)