摘要
An m-cycle system of order v and index λ, denoted by m-CS(v,λ), is a collection of cycles of length m whose edges partition the edges of λKv. An m-CS(v,λ) is α-resolvable if its cycles can be partitioned into classes such that each point of the design occurs in precisely α cycles in each class. The necessary conditions for the existence of such a design are m|λv(v-1)/2,2|λ(v -1),m|αv,α|λ(v-1)/2. It is shown in this paper that these conditions are also sufficient when m = 4.
An m-cycle system of order v and index λ, denoted by m-CS(v,λ), is a collection of cycles of length m whose edges partition the edges of λKv. An m-CS(v,λ) is α-resolvable if its cycles can be partitioned into classes such that each point of the design occurs in precisely α cycles in each class. The necessary conditions for the existence of such a design are m|λv(v-1)/2,2|λ(v -1),m|αv,α|λ(v-1)/2. It is shown in this paper that these conditions are also sufficient when m = 4.
基金
the National Natural Science Foundation of China (No.10971051)